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Abstract— Autonomous navigation in vegetation is challenging
because the vegetation often hides the load-bearing surface which
is used for evaluating the safety of potential actions. It is difficult
to design rules for finding the true ground height in vegetation
from forward looking sensor data, so we use an online adaptive
method to automatically learn this mapping through experience
with the world. This approach has been implemented on an
autonomous tractor and has been tested in a farm setting. We
describe the system and provide examples of finding obstacles
and improving roll predictions in the presence of vegetation. We
also show that the system can adapt to new vegetation conditions.

I. INTRODUCTION AND RELATED WORK

Automated vehicles that can safely operate in rough ter-
rain would benefit many applications in agriculture, mining,
and the exploration of hazardous areas. Operating in the
unstructured environments common in these applications re-
quires a vehicle to recognize untraversable areas and terrain
interactions that could cause damage to the vehicle. This is
a challenging task due to the complex interactions between
the vehicle and the terrain, an environment that is often
unknown or changing, and the limitations of current sensing
technologies to provide measurements of important quantities,
such as the the load-bearing surface of the upcoming terrain.

Vegetation further complicates the situation by covering and
hiding the load-bearing surface, preventing a purely geometric
interpretation of the world. In many agricultural applications,
the vehicle is required to drive through vegetation, and in more
general off-road exploration tasks, driving through vegetated
areas may save time or provide the only possible route to a
goal. Vegetation also changes based on the season and weather.

Many researchers have approached the rough terrain navi-
gation problem by creating terrain representations from sensor
information and then using a vehicle model to make pre-
dictions of the future vehicle trajectory to determine safe
control actions [1], [2], [3], [4]. These techniques have been
successful on rolling terrain with discrete obstacles and have
shown promise in more cluttered environments, but handling
vegetation remains a challenging problem.

Navigation in vegetation is difficult because the range points
from forward looking sensors such as stereo cameras or a laser
range-finder do not generally give the load-bearing surface.
Classification of vegetation and solid substances [5] can be
useful for this task, but it is not sufficient. A grassy area on a

Fig. 1. Automated tractor test platform in vegetation.

steep slope may be dangerous to drive on whereas the same
grass on a flat area could be easily traversable. Researchers
have modeled the statistics of laser data in grass to find
hard objects [6], assigned spring models to different terrain
classes to determine traversability using a simple dynamic
analysis [4], kept track of the ratio of laser hits to laser pass-
throughs to determine the ground surface in vegetation [3],
and used a set of time and space locality constraints to filter
out vegetation [7].

The above methods all rely on fixed vehicle and terrain
models that can be difficult to construct, hard to tune, and if
the terrain is unknown or changing, the models can become
inaccurate and the predictions will be wrong. Incorrect predic-
tions may lead to poor decisions and unsafe vehicle behavior.

Other researchers have investigated the use of parameter
identification techniques with soil models to estimate soil pa-
rameters on-line from sensor data [8], but these methods only
determine the terrain that the vehicle is currently traversing.
We would like to make predictions of the terrain in front of the
vehicle so that the system can take appropriate action before
it reaches these areas.

To make predictions of upcoming terrain, we have proposed
a method of learning the mapping from forward looking
sensors to future vehicle state automatically by using the
vehicle’s experience from interacting with the terrain [9]. In
sparse vegetation, we showed improved predictions of the
load-bearing surface using this method running offline with
simple features.

This paper describes the implementation of the method
presented in [9] on an autonomous farm vehicle (see figure 1)



and shows results of the system running online in more
difficult and varied terrain. The method has also been extended
to use a richer set of features, to automatically learn the
distance dependence of the features, and to include training
on untraversable terrain.

Our vehicle test platform and general approach to rough
terrain navigation is given in section II. Section III describes
the online adaptation of the system. Experimental results are
given in section IV and conclusions and future work are given
in section V.

II. ROUGH TERRAIN NAVIGATION

Autonomous navigation in rough terrain requires consider-
ation of how the vehicle will interact with upcoming terrain
in order to keep the vehicle safe. Our project is focusing
on agricultural applications where the goal is to follow a
predefined path or reach a goal destination while staying
within various safety constraints. Depending on the specific
application, the vehicle should avoid an unsafe area on the
path or stop and call for help. We consider terrain that is
common on a farm including slopes, ditches, and vegetation,
as well as relevant obstacles such as people, equipment, posts,
and buildings.

A. Vehicle Platform and Terrain Mapping

Our project team has automated a John Deere 6410 tractor
(see figure 1). The tractor computes its current pose using
a 13 state extended Kalman filter with bias compensation
and outlier rejection that integrates data from a differential
GPS unit, a 3-axis fiber optic vertical gyro, a doppler radar
ground speed sensor, a steering angle encoder, and four custom
wheel encoders. To sense upcoming terrain, the vehicle has a
high-resolution stereo pair of digital cameras, a near-infrared
camera, and two SICK laser range-finders (ladar) mounted on
custom actively controlled scanning mounts. The first ladar on
the roof of the vehicle is mounted horizontally and is scanned
to cover the area in front of the tractor. The ladar on the front
bumper is mounted vertically and is actively scanned in the
direction the tractor is steering.

The cameras and scanned ladars are precisely calibrated
and registered with each other in the tractor frame, and the
information from the different sensors is tightly synchronized
with the vehicle pose to be able to accumulate data into a high
quality global terrain map (see figure 2).

Our goal is to find the load-bearing surface, so the system
maintains a grid representation of the area around the vehicle
to hold the data from the forward looking sensors. We use
an approach similar to [3] to take advantage of the added
information about free space that a laser ray provides. Each
grid cell contains a column of voxels that record the locations
of any hits in that area of space, as well as the number of
laser rays that pass through the voxel. Fixed length buffers
in each voxel let new hit or pass-through data replace old
data and allow the system to handle simple dynamic obstacles.
Although the results presented in this paper only use ladar
data, this representation is fairly general and can accept any

Fig. 2. Map of farm test site buildings using both ladars as the vehicle drove
on a path to the field. The brightness of the range points represents the laser
reflectance value.

Fig. 3. Elevation map of farm test site buildings (tractor is in lower right
of figure 2) using the mean height in each grid cell. Model predictive control
showing chosen arc along path and unsafe arcs to the left due the steep slope.

range sensor as an input. To reduce the dimensionality of the
data, features can be computed for each grid cell. For example,
figure 3 shows a map that uses the average height of all the
points in each cell.

B. Model Predictive Control

Autonomous navigation in rough terrain has been success-
fully implemented within a model predictive control frame-
work as a search through speed and steering angle commands
over a fixed path length [2]. In this framework, a vehicle model
is used with a terrain model to predict the behavior of the
vehicle for different control inputs, and then the predictions
are evaluated to choose the best control. Figure 3 gives an
example of this approach. A set of controls are sampled from
the space of possible speed and steering angle commands, and
the vehicle and terrain models are used to predict the result
of using these controls. The vehicle model includes system
delays and the dynamics of the steering actuation to produce
feasible arcs.

A kinematic model of the vehicle is then placed on the
terrain map at regular intervals along the predicted trajectory,
and the heights of the four wheels are found in order to
make predictions of the vehicle roll and pitch and ensure
that the front rocker suspension is within limits. The heights
of the terrain cells under the vehicle are used to check for
clearance hazards. We have extended our tractor model to
include various implements and they are checked for clearance
hazards as well.



Once a set of possible arcs are found that satisfy the
safety constraints, a cost function is used to evaluate the arcs
to find the best control. For path tracking, the cost is the
error between the arc and the desired path. If a destination
does not have a specific path associated with it, the cost is
defined as the minimum distance between the arc and the goal
point. By choosing the lowest cost arc that satisfies the safety
constraints, the vehicle is able to smoothly avoid obstacles
or other dangerous terrain conditions and then reaquire its
path. The system checks speed choices from fastest to slowest,
which results in a graceful slowdown as the vehicle approaches
an obstacle.

For smooth terrain with solid obstacles, this approach works
well because accurate predictions of the load bearing surface
can be found by simply averaging the height of the range
points in the terrain map. However, this performs poorly in
vegetation since many laser range points hit various places on
the vegetation instead of the ground. Using the lowest point
in each grid cell correctly ignores the scattered range points
that hit vegetation, but many times the lowest laser point does
not penetrate thicker vegetation, and using the lowest point
will cause the system to ignore positive obstacles. Clearly,
a more advanced criteria than simply using the average or
lowest height in a cell is needed to find a useful estimate of
the ground plane in vegetation. However, it is difficult to come
up with such a rule, and tuning to a given environment is time
consuming and challenging.

III. ONLINE ADAPTATION

To overcome the difficulties associated with creating terrain
models for a complex environment that may be unknown or
changing, we close the loop around vehicle predictions as
shown in figure 4 by making predictions from sensor data
and then observing actual behavior when the vehicle drives
over that area. This feedback is used for continual learning
and adaptation to current conditions.

The system makes predictions of the load-bearing surface
from features extracted from the laser range points and stores
these features in that cell. Features may change depending on
how far away the sensors are, so this process is repeated at
different distances to build up a set of feature sets for the cell.
Then the vehicle drives over the terrain and measures the true
surface height with the rear wheels. All the stored feature sets
are correlated with the true height and these input-output pairs
are used as training examples to a locally weighted learner
that learns the mapping from terrain features to load-bearing
surface height. This process happens continuously, so the more
the vehicle interacts with the environment, the more training
data the learning system receives.

Once the load-bearing surface is known, parameters of
interest such as roll, pitch, clearance, and suspension limits
can easily be computed using a kinematic vehicle model
as described in section II-B. This combination of kinematic
equations with learning techniques offers several advantages.
Known kinematic relationships do not need to be learned, so
the learner can focus on the difficult unknown relationships.
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Fig. 4. Learning terrain height predictions. At time T , features from map cell
m at distance d are used to make a prediction and then stored. As the vehicle
gets closer to the cell, feature sets for the cell computed at those distances
are stored. Then, at time T + N the vehicle traverses the cell and finds its
true height. The learner is trained with the set of feature sets computed at
different distances and the true height found from the wheel.

Also, the learned function can be trained on flat safe areas, but
is valid on steep dangerous areas. If we learned the roll and
pitch directly, we would need to provide training examples in
dangerous areas to get valid predictions there.

Features for obstacles such as buildings and other vehicles
cannot be found by driving over them, so they need to be
entered manually. For these untraversable areas, feature sets
are stored for different distances just like other areas, but we
must manually select them in our user interface to assign a
truth value for learning (often highest or lowest point).

A. Feature Extraction

As described in section II-A, sensor information is ac-
cumulated over time in a global voxel representation. Each
voxel is a 15 cm cube, and maintains the laser hits and
pass-throughs for that voxel. Features are extracted over 3x3
neighborhoods of columns of voxels. The small voxel size
is needed because laser pass-throughs in vegetation become
more unlikely for larger voxel sizes. However, 15cm is too
small too get meaningful results for many of features based on
the distribution and shape of points, so we combine multiple
columns of voxels together. The resulting 45cm x 45cm patch
on the ground is approximately the same size as the rear wheel
contact surface we use to measure true ground height.

1) Distance: Many features are dependent on how far away
from the vehicle they are when they are observed and how
many laser range points are in the cell. Figure 5 shows a plot of
a learned surface and the associated 95% prediction intervals
for the difference between true ground height and the ’lowest
point’ feature using a small dataset taken in vegetation. The
plot shows that the performance of using the ’lowest point’
feature to predict ground height is dependent on the distance
and number of points. The surface was learned using the
techniques given below in section III-B. The surface shows
that the lowest point becomes a worse predictor of the true
ground height at greater distances. The prediction intervals
show that predictions using lowest point can be more certain
at closer distances and when there are more points in the cell.
Because of observations such as these, we include the number



of points in a cell and the distance from the tractor of a cell
as features for the learner to use. This allows the learner to
find relationships such as those in figure 5 to produce better
predictions and more accurate prediction bounds.

2) Simple statistics on height: We extract several simple
features based on the height of points in a column of voxels,
including the mean height and robust lowest and highest point
(5% and 95% height value).

3) Shape of the point cloud: Analysis of the eigenvalues of
the covariance matrix of the points in a cell gives information
about the shape of the point cloud, which can be used to
differentiate different terrain types. We incorporate the three
shape features discussed in [5] that are able to separate
different types of point clouds (line, plane, scatter). These
features are meant to be applied over a neighborhood, so for
each set of voxel columns, we find the 3x3x3 cube of voxels
with the highest point density and find the shape features from
this data. Full classification and grouping of all 3D data as
in [5] could increase performance further.

4) Voxel hit and pass-through information: Several features
are computed from the voxel hit and pass-through information
that are useful to determine if an area is solid. In general,
areas with a mixture of hits and pass-throughs are vegetation,
whereas solid objects have a higher percentage of hits. As a
vegetation indicator, we compute the ratio of pass-throughs
in voxels with hits to the total number of pass-throughs. To
detect solid objects, we compute the percentage of hits for
each voxel and then sum the result. Finally, we compute the
difference in the number of hits in adjacent columns of voxels
to detect vertical solid surfaces.

5) Appearance: The maximum laser reflectance value in a
cell is used as a feature that can help differentiate between
different materials. We can also project values from our IR
camera and color cameras into the grid representation, and we
are currently looking into additional appearance features such
as temperature, color, and texture that use this data.

B. Learning

We use locally weighted learning [10] to learn the unknown
and potentially complex mapping between laser features and
the true ground height. A common form of locally weighted
learning is locally weighted regression (LWR). Training with
this algorithm simply involves inserting input-output pairs
into memory. Then, when a new prediction is requested, the
points in memory are weighted by a kernel function of the
distance to the new query point, and a local multi-dimensional
linear regression is performed on these weighted data points
to produce a prediction.

Standard statistical techniques for computing prediction
bounds have been adapted to be used with this algorithm [11].
The size of the prediction bound depends both on the density
of data points in the area, and on the noise in the outputs of
nearby data points that cannot be explained by the model.

Locally weighted learning stores all of its training data,
so predictions take longer to compute as more training data
is collected. This is not practical for systems such as ours

Fig. 5. Learned surface and prediction intervals showing that the performance
of using the lowest point to predict ground height is dependent on distance
and number of points.

that receive a continuous stream of data. Schaal [12] has
described an on-line incremental version of LWR called locally
weighted projection regression (LWPR). Instead of postponing
all computations until a new prediction is requested, LWPR
incrementally builds a set of receptive fields, each of which
has a local regression model that is incrementally updated. The
data points are then discarded, and predictions are made from
a combination of nearby receptive fields. A forgetting factor is
used to slowly discount old experience as it is replaced with
new data. LWPR handles high dimensional data by taking local
projections on the data instead of using all the dimensions.

Our online system is currently using LWPR as its function
approximator. Figure 5 shows an example of LWPR for a
simple two dimensional problem.

IV. EXPERIMENTAL RESULTS

We have tested the system described above at a nearby
working farm and an undeveloped area with tall weeds. Results
show that the system can find obstacles in sparse vegetation
and improve predictions of vehicle safety quantities such as
roll. We also show the benefits of adapting online when the
vehicle encounters challenging new terrain.

A. Obstacle in vegetation

Figure 6 shows an example of a person kneeling among tall
sparse vegetation. The angle of figure 6(a) makes it difficult
to see the taller weeds, but the highest point statistic shown
in figure 6(b) clearly shows that the kneeling person is beside
various vegetation of a similar height. Because the vegetation
is sparse, the laser was able to penetrate through the tall
weeds and the lowest point feature in figure 6(c) gives a good
representation of the ground plane, but it makes the person
disappear along with the vegetation. From these figures, it
is clear that using a simple statistic such as the highest or
lowest point will lead to false positives or false negatives in
the presence of vegetation.

Instead of hand-crafting a set of rules and thresholds for how
to combine our features to accomplish this task, we used the
learning method described above to find this automatically. We
drove around in similar types of vegetation for approximately
10 minutes to let the system learn what types of features



(a) View from tractor.
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(b) Highest point.
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(c) Lowest point.
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(d) Learned height predictions.

Fig. 6. Person kneeling next to similarly sized sparse vegetation. Learned result removes the vegetation but keeps the person.

(a) Tractor on slope.
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(b) Lowest point.
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(c) Learned height predictions.
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(d) Roll prediction comparison.

Fig. 7. Tractor driving through weeds on a slope. Learned result produces more accurate roll predictions.

represent compressible objects. To teach it about solid objects,
we drove up to a set of walls, posts, and hay bales and then
manually selected them to be trained using the highest point
as the truth value.

After this simple training procedure, the learning system
was able to produce the results shown in figure 6(d). The
vegetation has been removed, thus reducing false positives,
but the person remains and would trigger a clearance hazard.

B. Roll predictions in vegetation

Figure 7 shows the vehicle traversing a slope with vegeta-
tion. Using the lowest point as shown in figure 7(b) results in
overestimating the ground surface in some of the vegetation on
the left. After training our system by driving it through some
similar vegetation for approximately 10 minutes, it produces
more accurate height predictions as shown in figure 7(c). From
the system level, we really care about predictions of safety
parameters such as roll and pitch. Figure 7(d) shows that
the improved height estimates result in better roll predictions
when compared to the true value found when we drove over
that area. The plot shows that predictions using lowest point
are poor for the area shown in figures 7(b) and 7(c) that is
encountered 20 seconds into the test.

If the vegetation was on the bottom of the slope instead of
the top, then making this mistake could be dangerous because
the system would believe that the vehicle could drive on top of

the vegetation instead of predicting that it would drop below
the vegetation and perhaps cause a roll-over hazard.

C. Online adaptation

We also performed a set of experiments in much thicker
vegetation that the laser cannot penetrate beyond short dis-
tances. To make predictions ahead of the vehicle in these
circumstances, the system must use its prior experience with
similar terrain to determine an estimate of the ground plane.
Figure 8(a) shows the tractor entering dense vegetation over
1m tall. The three graphs in figure 8 show the results of
three different ways to approach this difficult task. Each graph
shows the error from the true ground height of the lowest point
feature and the predicted ground height at a distance around
5m in front of the vehicle as it drives into the tall vegetation. At
the beginning, when it is driving through relatively short grass,
the lowest point feature works well, but after 10 seconds into
the run when the vehicle enters the tall vegetation, the laser
cannot penetrate the vegetation 5m in front of the vehicle, and
the predictions must adjust.

The first case in figure 8(b) shows a system that was trained
in other vegetation in a nearby area for approximately 10
minutes, and then continued to adapt as it drove into this new
vegetation. It’s prior training allows it to handle the transition
from short grass to tall weeds, and it also does a decent
job of finding the true ground height despite the limited data
available.



(a) View from tractor as it enters
the vegetation.
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(b) Learned result with online
adaptation.
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(c) Learned result without adap-
tation.
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(d) Adaptation without previous
learning.

Fig. 8. Benefits of online adaptation when vehicle enters new vegetation. Blue line (top) shows lowest point. Red line (bottom) shows learned result.

Figure 8(c) shows what happens if the vehicle is trained
just as in the first case, but then the learning algorithm is
turned off. Using only it’s prior experience it is able to handle
the transition, but it then has significantly higher error in the
vegetation than the adaptive case, which would result in many
false positives for the system.

The third case in figure 8(d) shows the predictions of the
system when it is started fresh with no prior training but is
allowed to adapt during the run. Without any experience, it
fails to recognize the transition to weeds and continues using
the lowest point. However, once it collects some data it adapts
and starts doing better. Due to its limited training, it continues
to make errors about when to use lowest point and when to
drop below it, but the adaptive capability will allow it to get
better over time.

These results show the benefit of adapting online to the
current conditions and giving the system some context. Our
system makes predictions by looking at a single grid cell in
isolation. Without the context that humans use so effectively,
the system is at a great disadvantage because a patch of
short grass and a patch of tall grass may have very similar
laser feature signatures, especially at a distance. Continually
adapting online is one way to give the system context by
exploiting the local similarity of the world. Of course, it is
also important for the algorithm to detect when the upcoming
terrain is different than what is around it, and then it must fall
back on prior experience or use caution if the area is unknown.

V. CONCLUSIONS AND FUTURE WORK

We have shown a system that produces improved predictions
of vehicle safety parameters by learning predictions of the
load-bearing surface in vegetation while still finding positive
obstacles. The entire system runs online on our autonomous
tractor test platform, and can improve and adapt over time. A
key benefit of this approach is that the vehicle can generate
labeled training examples of features at different distances just
by driving through an area of interest. This makes it easy to
collect massive amounts of training data quickly and let the
system figure out how to interpret it.

In addition to more systematic testing of our system, we
are currently looking at using the learner prediction intervals

for better vehicle speed control so it can slow down in areas
where it is not confident. We are also experimenting with more
appearance based features using the cameras on the vehicle.
Finally, we will apply the same learning approach to be able
to predict upcoming slippery conditions.
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