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Abstract— Autonomous navigation in outdoor environments
with vegetation is difficult because available sensors make very
indirect measurements on quantities of interest such as the
supporting ground height and the location of obstacles. We
introduce a terrain model that includes spatial constraints on
these quantities to exploit structure found in outdoor domains
and use available sensor data more effectively. The model consists
of a latent variable that establishes a prior that favors vegetation
of a similar height, plus multiple Markov random fields that
incorporate neighborhood interactions and impose a prior on
smooth ground and class continuity. These Markov random fields
interact through a hidden semi-Markov model that enforces a
prior on the vertical structure of elements in the environment.
The system runs in real-time and has been trained and tested
using real data from an agricultural setting. Results show that
exploiting the 3D structure inherent in outdoor domains signifi-
cantly improves ground height estimates and obstacle detection
accuracy.

Fig. 1. Tractor test platform

accurate terrain model that includes a description of the load-
bearing surface and any obstacles in the local environment is
. INTRODUCTION a considerable challenge.

Outdoor environments such as those encountered in agriculEarly work in terrain perception assumed smooth terrain
ture, mining, and the exploration of hazardous environmerwéth discrete obstacles [1] [2], and achieved good results in
are often viewed as being “unstructured”. This absence bese domains by looking at the height of the sensor readings
structured features, such as road markers, straight walls & individual grid cells. More recent work has included
a flat ground plane has often been cited as one of thkittered environments with vegetation that are much more
reasons navigating within these environments is considerditficult because the range points from sensors do not generally
to be challenging [1] [2] [3]. However, such environments dgive the load-bearing surface. To handle these challenging
possess a great deal of structure that humans frequently expligimains, researchers have tried to model various parts of the
in the performance of tasks we wish to automate. For exampigpblem. A common approach is to model how a range sensor
consider a vehicle navigating through a field of vegetation §enetrates vegetation to discriminate between vegetation and
crop. We can use the knowledge that the ground is generzgBlid objects [3] [5] [6]. Another approach begins with a cloud
smooth and the vegetation has approximately constant heightange points and looks for various features or structure at
to infer the ground height and allow navigation even throughlocal level [7] [8]. We have used online learning methods to
areas where the ground is not directly observed. The challerggomatically learn the ground height in vegetation from fea-
lies in expressing this type of structure in a way that can eres [4]. A common characteristic among these approaches is
made useful in autonomous navigation tasks. that they make the strong assumption of independence between

Local autonomous navigation in outdoor environments Ratches of terrain for estimating ground height or class. We
often performed in a model predictive control framework thatope to achieve better results by relaxing this independence
searches over dynamically feasible control arcs for a sa&sumption through the inclusion of spatial correlations.
trajectory [2]. In this framework, a terrain model with obstacles Spatial correlations in images have often been expressed
and the supporting surface is used in combination with wsing Markov random fields [9] [10] and these techniques
model of the vehicle to find a dynamic trajectory that avoidsave been used for vision problems such as the segmentation
obstacles while protecting against roll-over, body collisionsf various land types in satellite images [11], but these
high-centering, and other safety conditions [4]. While faithfuhpproaches use only 2D image data instead of the 3D data
models of vehicle dynamics are often available, acquiring @mat is generally available to an off-road robotic system.



In this paper, we describe a generative, probabilistic ap-Accurate global vehicle pose allows us to assign ladar
proach to modeling terrain. We exploit 3D spatial structure ipoints corresponding to the same region of space to the
herent in off-road domains and an array of noisy but abunda@me voxel. Exploiting the precise synchronization of the
sensor data to jointly produce better estimates of the grousehsors, we project ladar points into the most recent color and
height and more accurate classification of obstacles and othidrared images, so that each ladar point results in a vector
areas of interest, even in dense non-penetrable vegetationof appearance measurements for that voxel, including laser

Our terrain model consists of two distinct but interactingemission (reflectance), infrared temperature, and dolor.
Markov random field models (MRFs) and a latent variable for The voxel representation also allows us to maintain a
common vegetation height. One MRF models ground heigti¢nsity estimate throughout space by comparing how many
and enforces our assumption that ground height is smoottdglar rays pass through each voxel (pass-throughs) with the
varying. The second MRF encodes our assumption that classnber of ladar rays that hit something in that voxel (hits).
patches of space tend to cluster (for example, patches ¥nsity information is valuable when trying to separate sparse
vegetation of a single type tend to be found together). Thiegetation that contains a mixture of hits and pass-throughs
latent variable for common vegetation height enforces ofmom solid objects that contain a majority of hits and only a
assumption that vegetation of the same type generally Haw pass-throughs due to sensor noise [3] [4].

a similar height. These three components interact through a
hidden semi-Markov model (HSMM) that enforces vertical .
structural assumptions such as the understanding that vege?lthough our data representation is based on the voxel,
tation grows on top of ground. vehicle naV|gat|on_ is gen_erally performed on a 2D surface,

The structure in the terrain model is combined with informa° our_ground height estimates and classification results are
tion from multiple sensors on the vehicle using sensor mod&i@de in terms of voxel columns. In our model, thgh
that are automatically learned from training data. Obstacles ¥RX€! column class is described with a multinomial dis-
treated as having uncertain attributes so obstacle appeardfifdted random variable’;; taking on values related to the
does not need to be explicitly trained. possible conten‘ts of the columid;; = c with e.g.c €

Joint inference of ground height, class height and clagground, vegetation, obstacle}. B _
identity over the whole model results in more accurate estj-/Ssociated W':h theéth voxel in thei;jth voxel column is
mation of each quantity. For example, inferring the vegetatidfle vOXe! stateX;;, a multinomial distributed random variable
height allows for an improved estimate of the height of th@i‘t describes the nature of the material inside the voxel,
underlying ground. Similarly, knowing the ground height help&i; € {groumi, & fregjspacé, wherec is the class of the;th
disambiguate solid obstacles from the ground surface. ~ VOX€l column® The ngth voxel is also associated with the

Our approach allows us to model 3D structure in a reQPServation vectoly; = [Yaen, Yrem, Yir, Yoo, containing
sonably efficient inference scheme. Gibbs sampling over tHgCtors of N ladar hit and pass-through density measurements
MRF structures lets us perform exact inference in the HsMRf Which the M hits include laser remission values, |2frared
models using an efficient dynamic programming algorithn’i‘?rm’erat”{es and c]&)lor data (i¥icn = [Yien:--- > Yien)

This substantially reduces computation time over a fully 3Brem = Yrems -+ Yeeml)-
MRF model, and allows our system to run in real-time. A. Observation Models

I11. TERRAIN MODEL

Il. VEHICLE PLATEORM AND DATA REPRESENTATION We assume that voxels form the smallest indistinguishable

) h element of space, occupied completely by one (and only
Our project team has automated a John Deere 6410 Ugfey \oxel state. Each voxel state maintains a distribution

ltor (Ifsee. f|gured1) and e_quped ';] with hm?nyhsensoLS f8(/er material properties including density, remission, infrared

oca |zgt|on an pe.rceptlo.n. [4]. The ve Icle has a IgQémperature, and color that describe the characteristics of that
resolution stereo pair of digital cameras,
, the vegetation state may include a range

, and therefore different voxels in vegetation may have

is mounted on the roof to get range data over a large aiggerent colors, but we assume that the color of the vegetation
in front of the vehicle, and the second scanning ladar Within each voxel is uniform

mounted on the bumper to get high density measurements 0o measurement vectdr*

. d X ; contains a variable number of
nearby terrain and better penetrate upcoming vegetation. Thgs, measurements of the material properties. The graphical

cameras and scanned ladars are precisely calibrated and tightly
synchronized with an accurate global vehicle pose estimate. The ladar scans come in at a much higher rate than the image data so

The basic representational structure of our terrain modelﬁ@'“?'e scans are projected into the same image. However, the high pixel
ensity of the images means that we collect approximately 100 pixels for

thevoxel a 15cm® box-shaped region of 3 dimensional SPaC&wery ladar point. This coupled with the continual movement of the scanning
We represent the vehicle’s local spatial environment as a voaslars makes it unlikely that a single pixel is used more than once, so we treat
lattice of size | x J x K, where théjkth voxel is in theijth eazch color_ and infrare_d tagged Iada_lr_point as an independen_t measurement.

. . . " In our implementation, the possibility of a voxel column simultaneously
pOSItIOﬂ of a horizontal 2[_) _g”d and theh position above an containing obstacle and vegetation is excluded, though its inclusion is a trivial
arbitrary subterranean origin. extension of the model we present.
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(a) Voxel model (b) HSMM models (c) MRF model

Fig. 2. A graphical description of the model showing (a) the voxel, (b) the voxel column, and (c) the connections between voxel columns. For each voxel
columnij, the model contains voxel statééi’g, observationé/i’;, and a clas€’;;, class height{;, and ground heithfj that interact with neighboraV; ;
and the common class height® ’

model in Figure 2(a) illustrates the conditional independencigsvegetation are either high because of the strong reflectivity
between the voxel statéffj, the material property randomof chlorophyll, or very low due to small cross-sectional area.
variablesden, rem, ir and col, and the measurements. ConWe resort to a mixture of Gaussians to describe the distribution
ditional on ij the material properties are independent, araf the material properties within a state.

conditional on the material properties, the measurements ar&Ve develop the marginal distribution for the remission
independent. The voxel material properties are not directialues, but the infrared and color data are determined analo-
observed, and we are not concerned with their values beyagalisly. The true material propertym for statex is modeled
what they reveal about the state. Thus material properties cas-a mixture of Gaussians with individual mixture mea#s;,
stitute nuisance variables that we remove from the observatimariancess?, and mixing coefficientsP ().

models through marginalization. R )
Density values range from empty spacéer{ = 0) to p(rem|Xikj:m) :ZP@ 1 exp (_(Tem— rem;) )
i=1

completely solid fen = 1), and we use a beta distribution \/2mo? 207
B(a.,b,) to describe the density values of each statdhe 2
measurements of density;’ are binary (ladar hit or pass-Conditional on the true material propertyem, the mea-

through), so we use a binomial distribution to describe treurementsy;?,, are assumed to be normally distributed,
number of hitsM = ZnNzl Y., out of N total rays. When 72, ~ N(rem,0?). As with the density, we integrate out
we integrate over the nuisance parameker, we recover the the nuisance variableem to get the marginal likelihood for
beta-binomial distribution as the marginal likelihood observail the remission dat@,em = [Ylep, - - -, ¥2L,], resulting in a
tion model. mixture of Gaussians that is a function of the data mgap .
k

P(M " | X” x) p(yrem |szj = l‘) :/p(yrem ‘ rem)p(rem | szj = l‘) d(rem)
= /P(m | den)p(den | Xikj = x)d(den)

(1) R M
[N\ B(a, + M,b, + N — M) = > P(i) / [T 2yt | rem)p(rem | rems) d(rem)
T\ B(az,bs) =1 m=1
. . . . R — 2
The distributions over the voxel appearance properties, ZP(i) 1 exp _(yrem — rem;)
including infrared temperature, laser remission and color, are pet 5 9, o2 9 (0_2 + ﬁ)
all inherently multi-modal and thus not well described by a T (ai T V) oM

simple parametric distribution. For example, remission values 3)



Equation 3 shows that the marginal appearance distributiagreups of the same class. We express this preference using the
become more broad when there are few data poiffsi¢ conditional MRF distribution
small), reflecting the increased uncertainty in the material
property and hence the state. P(Cij =c| Cny) eXp<_>‘C Z (c# Csf)) )

The free-spacestate does not possess any meaningful ma- {s,t}€Ns;
terial properties beyond densityen. Ladar hits occurring where N;; is the set of neighboring indices ardy,, is the
in free-spaceare generally the result of noise so we modelet of classes in the neighborhood of théh voxel column.
the non-density material properties as matching the materialGround height varies smoothly from one patch of ground
properties of the states in contact witke-space to the next, so we expect th@l; will be tightly correlated

Although we expect obstacles to generally have a fairly highith nearby values. We express this belief using a Gaussian
density den, we cannot hope to build an accurate observatitmarkov random field
model for the appearance of each of the innumerable obstacles 1 1 2

(~zz(® > n))
{s,t}EN;
®)

one might encounter in outdoor environments, so we simply(H{; = h | HY; ) o exp TN

use a singleobstacle state with a corresponding uniform *

distribution over the observable range of material appearance ) . .

properties. We rely on accurately modeling the features of th&ere|Vi;| is the size of the neighborhood. o

trained states to detect obstacles as a default option when non&/€ €xpect that vegetation of the same clasms a similar

of the other states are consistent. height H¢ with some variation. This assumption may not be
valid for obstacles, so we only apply it to vegetation classes.

B. Mixture of Hidden Semi-Markov Chains of Voxel ColumnSiven the common height of the vegetation in this afég
When moving from lower to higher voxels within a columnVe model the expected variation with a Gaussian

2
20¢,

we expect to move from ground to vegetation, or perhaps ¢ . 1 2
ground to obstacle, and eventually to free-space. We never 1 (Hij =N | H®) eXp(_ 2%, (h = h?) ) ©)

expect free-space to be found below ground, nor do we expect
vegetation to be suspended above free-space.

This type of structure is naturally imposed by introducing a The interacting Markov random fields of this model capture
Markov dependency between voxel states that restricts vertiaportant structure, but these dependencies prevent analytic
transitions, thus defining a hidden Markov model within eadhetermination of the posterior distributidd(C, HY, H¢ | Y').
voxel column. However, the duration of states suclyasind The set of HSMMs that describe the data in each column
and vegetation are not well modeled as states in a Marko@f voxels can efficiently produce distributions over the state
chain which would induce a geometric distribution on theurations, which makes it easy to sample from the conditional
duration of states. We resort instead to a hidden semi-Mark@igtribution
model (HSMM) [12] over voxel states, which explicitly rep- g e
resents a state duration (or height distribution) over voxels for P(Cuj, Hyjo Hij | Yijs Oy
each state value. so we use Gibbs sampling [9] for approximate inference.

As shown in figure 2(b), we associate a single HSMM Algorithm 1 gives the application of Gibbs sampling to our
chain structure with each column claSs;, which makes the model. The HSMM column models require a distribution over
resulting column model a mixture of HSMMs. The durationglass heights which comes from the common class height
of the ground and class states describe the height of thésent variable H¢, as shown in Figure 2(c). Samples of
terrain elements and are given i, and H;. the common class height are produced from its conditional
C. Markov Random Field Model of Interacting Voxel ColumndslsmbmIon given the current column class height samplgs

The HSMM column models capture the vertical structurp(Hc:MHic,eU) o exp(% (h_i Z h§4)2)
between the states, but there are also significant horizontal ! 203/ D¢ Dcijell,’cij:f
dependencies between neighboring columns. As shown in (8)
Figure 2(c), we model these dependencies using two distimdtere D¢ is the number of columns with class
but interacting Markov random fields (MRFs) [10] for class Once the common class heights® have been sampled,
C;; and ground heightHfj, each dependent on the valuegach voxel column is sampled. The first step of the sampling
of their respective neighbors, and a latent variable for theocedure is to find the priors over clag;, class height
common class heighti across all columns. These variabled?{; and ground heithf’j from the neighbors, as given in
interact through the HSMM column models by imposing aquations 4 and 5, and the common class heigfftas given
prior on the state durations associated wéffj, and Hfj and in equation 6. The priors off{; andHfj are then incorporated
imposing a prior over HSMM class models;. into the HSMM model as priors over state durations and are

The neighborhood dependency 6f;; reflects the prior shown in the subsequent equations/agi; = h | H¢) for
assumption that class identities are positively correlated witte class state = ¢ or P(Hf’j =h| Hf(,ij) for the ground
their neighbors so voxel columns tend to cluster in contiguogtatex = g.

IV. INFERENCE

HE, o H) ()



Algorithm 1 Gibbs sampling from the model

Sample common class heights from P(H®¢ | Hf yhHLK R ¢
using all the column class height sample(s of lhe sjsaelgn]e clgé-éc Yy | statex ends atk, Ci; = ¢, Hy,;, H")
for all MRF voxel columnsij do _ZZP Y"chl HIXf =2, X ’H“” =h,Cyj, HY;, ,H)
Find ground and class priors from neighbors:
PO | H3,) . »
P(Cy | Cnyy) =>_ I POG 1P =h| H  HOBE ()
for all Classes: do h k'=k+1
Find class height prior from common class height of (10)
same class: Since we know by assumption that the chain must end in
P(H;; | H) the final stater = free-spacethe probability of the data for

Use class HSMM to find probability of the data angassc is the final value ofy in that state.
distributions over the ground and class height:
P(Y, i | Cij = ¢, HY, , H) P(Yi; | Cij = ¢, HY, ,H®) = o (« = free-spacg (1)
P(H, | Cij = ¢, Yy, HY, |, HY)
( 1]|C]*CY;«JﬂH HC)
end for
Compute class distribution:

As described in Algorithm 1, this is combined with the class
prior P(Cy; | C,,) to find the distribution over classes, which
is used to sample a new class.

c Finding the distribution over state durations involves com-
PGy | Yig, O, HZ HC) bining a%ndﬁ.
o P( L]|0117H H)P( l]|CN”)
Samplec;; from P(C. i | z],CN”,HN ,H°) ii.c(h) = P(statex has duratiom | Y;;, Ci; = c, Hf(,ij,HC)

Sampleh{; from P(HY; | Cij = cij, Yi H L He)

17
Samplehc from P(Hc | Cij = ¢ij, Y Hg H)

:Z P(X) =, ij*h =a | Yy, Cij, HY,, H)
17 .
end for

k
= [P0 ) P(HE=hHE, , H)al; (7)o (x)
Once the prior distributions are found, the class HSMM * F'=k=h+1 (12)
structures are used to find the probability of the data and the
state duration probabilities for each class. HSMMs use a vayife know that in each chain, every state transition must occur
ant of the standard forward-backward dynamic programmimgter some duration, so we can normalize by, ¢* i (h) to
solution used for inference in regular HMMs [12]. As showiyet the posterior on ground and class height conditional on the

in figure 2(b), an HSMM maintains durations (COFFeSpondln@elghbors. Samples are then drawn from these distributions.
to height in our case) so that a single state is active over a

number of spatial steps up the chain. This formalism is veryP( G =h|Cij=c, Y;J7H H°> = ij:cgmmd(h)

natural for finding ground height or class height because thqa(Hc =h|Ci=c, yu,Hg JHE) = (5 state qp) (13)
neighborhood information can be included as a prior on the

corresponding state duration. The time complexity of HSMM calculations is greater than

The forward-backward computations are still performe@n HMM because of the sum over possible durations, but the
over the individual spatial Sterk as in an HMM, but an ©observation likelihood products can be pre-computed and the
HSMM must solve for the duratlon of each state, so in add|t|o‘-ﬁate durations to search over can be constrained based on the
to summing over possible state transitioris we also sum Priors to reduce the complexity (num Vozels+numStatess
over possible state duratiorts Equations 9 and 10 glve themM»’Dumtwn) for a single chain. _ _
HSMM forward and backward probabilities!; . and 3, , f Although it is typically difficult to show that Gibbs sampling
spatial stepk of the classe chain in MRF voxel colurhn‘j. has converged, we have found empirically that the model finds
We use the observation independencies and the determinidtigood estimate quickly, allowing for real-time execution.
transitions of our chain structures to reduce the computational
complexity. We use the notation~ and ™ to refer to the
previous and next states in the chain of the current class.  The model described in section Ill incorporates prior knowl-

. edge about the structure of the environment, but the specific
ajj () = P(statex ends atk, Y;;* | Cij = ¢, HY, , H°) model parameters must be learned from training data. These
_ZZP (Xk =z, Xkh=g! g2 = Yl ROy HY, HC) parameters include the sensor observation models for each

~ Y Y J’ state and the neighborhood interactions for class, class height,
and ground height. The generative nature of our model allows
_Z H P(Y, | z)P(H? = h | Hf(, JHO)ak af ! ~h(g7) us to decouple the learning problems, and train each of these
b b —k—hal observation and neighborhood interaction models individually,
(9) thus greatly simplifying the learning task.

V. LEARNING



A. Observation Models we can find the class prior standard deviatiop- directly

Collecting labeled training data is often expensive, e§0m this sequence of class heights. .
pecially in outdoor environments where there can be high The class interaction priokc gives the probability that a
variation in sensor readings so that a large training set q@ss tran_smons to a different class. This could be e§t|mated
needed. We use an approach based on [4] to collect |ag_:|[:_ectly with class-labeled data over a large area that includes
quantities of labeled training data to automatically train o§P@ny class transitions, but unlike the labeled data for the
observation models. Specifically, we drive through represep2servation models or the ground and class height interactions,
tative terrain of a single class such wsgetationand store this type of training data is difficult to collect. However,
the sensor measurements from the voxels of columns that f&nging the class interaction prior affects the system output
drive over as training examples for that class. This proce§s@n intuitive way by controlling how much classes tend to
is then repeated for other classes suchgasund Unlike ClUmp together, so this parameter can be set manually.

[4] which directly trains on the height of different types of VI. RESULTS

vegetationz we only train on the various material properties\y,e have tested this model in a nearby working farm and
of vegetation voxels, allowing us to remain general acrogg yndeveloped area with tall weeds. The following three

vegetation heights. o examples demonstrate the improved performance gained from
Each labeled voxel collected by driving through represefising the structure we have built into our model.

tative terrain is used as a training example for the observationn “each case, after training the model on representative
models in equations 1, 2, and 3. For appearance data suchedgin, we drive the vehicle through the test area, while letting
remission, infrared and color, the mean values from each voxgt Gibbs sampler run continuously. Running at 1Hz, the
are used to train the GMM observation models (i@n;, o7, system calculates observation likelihood products, computes
P(i) in equation 2) and the variance of measurements withi@mples from the model, and updates the local terrain map
the voxels is used as the GMM measurement model variaRggn the maximuma posteriori (MAP) class label, mean

(o, in equation 3). o round height, and mean class height from the samples in
Hit and pass-through data from the labeled training voxeiﬁch column.

are used to find the maximum likelihood parameters of the .
beta-binomial density modekf{ and b, in equation 1) for A. White shed
each class state using a Newton-Raphson method[13]. This Figure 3 shows the view from the tractor as it approaches
handles class states liggoundandvegetationbut the density @ White shed. This is a large obstacle that could be reliably
of obstacleandfree-spacestates must also be trained. Thee- detected in a variety of ways, but it will serve as a good
spacedensity can be trained using data that includes inse€@$ample of how the various pieces of our model interact
or dust that occasionally returns a ladar point, or it can jut produce the correct result. Figure 4 shows the output of
be set manually to strongly favor empty space. Similarly, tHr model including the MAP class labels: obstacle (red),
obstacledensity can be trained using hit and pass-through dat@getation (green), ground (gray), and the mean ground height
from representative obstacles, or it can be set manually to faj@f driveable areas. Obstacle columns are shown at their class
dense objects. height. The model produces a reasonable classification of the
. scene and a smooth ground estimate that would work well for
B. Neighborhood Models vehicle navigation. It classifies the shed as an obstacle and
The priors given in equations 4 and 5 describe how claserrectly captures the hill sloping down to the right despite
and ground height depend on their neighbors, and the pribe presence of sparse vegetation.
in equation 6 describes how column class heights are related’his example is interesting because on a voxel basis the
to the common class height. Each of these priors containgi@und class is much more likely than the broad uniform
parameter that gives the strength of the prior, and descrili¥sstacle class for the voxels from the shed. However, the MRF
how much classes tend to clump together, how smooth thed HSMM spatial constraints imposed on the ground surface
ground is, and how little class heights vary. As above, waake it extremely unlikely that the ground height would have
train these parameters by driving over representative terraia.tall step discontinuity at the shed wall. Since the density and
As we drive over an area, we record the ground heighippearance data are not well described by the vegetation class,
measured by the location of our wheels. We use these heigie shed is correctly classified as an obstacle.
sequences to find the standard deviatgnof typical ground Figure 5 shows the output of the system when the neigh-
height variation between voxel columns, which gives us th®rhood interactions are ignored and the columns are as-
maximum likelihood estimate of our Gaussian MRF grounsumed to be independent. Without neighborhood information,
neighborhood prior. classification is based solely on the data likelihood for each
Similarly, as we drive through vegetation, we get an approgelumn HSMM model. Lacking the smooth ground prior, the
imate vegetation height measurement by taking the higheglll is classified as a collection of tall columns of ground
ladar hit and subtracting the known ground height (from theoxels. Figure 5 also shows that without the ground and class
wheel locations). Since we assume that vegetation heights priers, the ground height estimates and classification labels are
independent given the common vegetation height in the arganerally more noisy.
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Fig. 3. View from the tractor of a white shed Fig. 4. System output, including ground heights$=ig. 5. Independent voxel column output with
and classification neighborhood interactions turned off, showing in-
correct classification of the shed
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Fig. 6. View from tractor of tall weeds, low grass,Fig. 7. System output, including ground heights=ig. 8. Lowest hit or pass for ground height in
person, and small dirt mound and classification vegetation and independent classification, showing
poor ground height estimates and misclassifications

B. Tall vegetation explain the dirt mound as a rise in the ground but the person

Figure 6 shows the view from the tractor in a challengingS @n obstacle.
scene: a camouflaged person in tall weeds with low grass and he range points do not penetrate the tall weeds in this
a small dirt mound to the right. Both the person and the digkample, as shown in Figure 8, which uses the lowest hit
mound have high infrared temperature. We trained on the tWb pass-through in each vegetation column for ground height
types of vegetation and bare ground. Figure 7 gives the medifl the MAP class labels when no neighborhood information
ground heights and MAP classification results. Inference oviér used. Assuming independence prevents information from
the model results in the correct classification of the pers@fopagating and the resulting ground height estimates are poor.
and the dirt mound, as well as the two types of vegetatioflso, both the person and the dirt mound contain a mixture
The area to the right of the person in the shadow of the t&f obstacle and ground classes.
weeds is classified as ground. Although that area is actuallyFigure 9 shows a plot of the quality of the ground height
low grass, since the system has no data from the area, gro@stimates from Figures 7 and 8. After computing estimates
is a reasonable estimate. of the ground height using our model, we drove through

Using the model structure and the known ground heigtite scene toward the area between the person and the dirt
under the vehicle allows the system to produce reasonabileund, and made measurements of the ground height using
estimates of the ground height even in areas where the growud wheel locations. This trajectory is marked as “True height”
is hidden. In addition to providing a smoothing prior, neighin Figure 9, and offers a comparison for the estimates produced
borhood interactions allow information to propagate. Fixingy the model and those using the lowest hit or pass-through in
the heights under the wheels affects the ground estimatess#ch column. The model ground estimates are fairly smooth
the surrounding area. Columns with little or no data can stiind stay within approximately 20cm of the true value.
produce useful estimates using their neighborhood. The systenAs another comparison, we show an approach that adjusts
can infer the common vegetation height of the tall weeds frothe lowest hit in each column based on that column’s indepen-
areas where it is observable, such as under the vehicle or dest classification. Instead of using spatial structure to infer the
transition to tall weeds behind the person. The assumptionvagetation height from the data as in our model, this approach
vegetation height similarity then allows the system to infaimply uses the average height of each class from the training
the ground height in areas where the ground is not directiyata for the offset. Figure 9 shows that this can work well when
observable. Knowing the ground height allows the model the classification is correct and the actual vegetation height
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neighboring columns. The model provides a natural way of
combining different types of sensor data. It can find obstacles
without needing to explicitly model them or collect obstacle
appearance training data. It can infer vegetation height to
produce estimates of the supporting ground surface even when
the ground is hidden by dense vegetation. Except for the
class neighborhood prior, the sensor and interaction model
parameters can be easily trained by simply driving through
representative areas. The system runs in real-time on real
data and we showed that including the neighborhood structure
significantly improved both the ground height estimates and
the obstacle classification over an equivalent model without
neighborhood interactions.

Fig. 9. Comparison between ground estimates of the area in Figures 7 & 8WWe are currently working on several improvements to the
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model. The system is set up essentially as a batch process,
even though data is continually coming in and the sampling
procedure continues over time. We would like to make it
a true online algorithm. We are experimenting with further
class models to handle hanging obstacles and holes. Finally,
we are looking into belief propagation and other approximate
inference schemes that might be less computationally intensive
than Gibbs sampling.
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