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Abstract— Autonomous navigation in outdoor environments
with vegetation is difficult because available sensors make very
indirect measurements on quantities of interest such as the
supporting ground height and the location of obstacles. We
introduce a terrain model that includes spatial constraints on
these quantities to exploit structure found in outdoor domains
and use available sensor data more effectively. The model consists
of a latent variable that establishes a prior that favors vegetation
of a similar height, plus multiple Markov random fields that
incorporate neighborhood interactions and impose a prior on
smooth ground and class continuity. These Markov random fields
interact through a hidden semi-Markov model that enforces a
prior on the vertical structure of elements in the environment.
The system runs in real-time and has been trained and tested
using real data from an agricultural setting. Results show that
exploiting the 3D structure inherent in outdoor domains signifi-
cantly improves ground height estimates and obstacle detection
accuracy.

I. I NTRODUCTION

Outdoor environments such as those encountered in agricul-
ture, mining, and the exploration of hazardous environments
are often viewed as being “unstructured”. This absence of
structured features, such as road markers, straight walls and
a flat ground plane has often been cited as one of the
reasons navigating within these environments is considered
to be challenging [1] [2] [3]. However, such environments do
possess a great deal of structure that humans frequently exploit
in the performance of tasks we wish to automate. For example,
consider a vehicle navigating through a field of vegetation or
crop. We can use the knowledge that the ground is generally
smooth and the vegetation has approximately constant height
to infer the ground height and allow navigation even through
areas where the ground is not directly observed. The challenge
lies in expressing this type of structure in a way that can be
made useful in autonomous navigation tasks.

Local autonomous navigation in outdoor environments is
often performed in a model predictive control framework that
searches over dynamically feasible control arcs for a safe
trajectory [2]. In this framework, a terrain model with obstacles
and the supporting surface is used in combination with a
model of the vehicle to find a dynamic trajectory that avoids
obstacles while protecting against roll-over, body collisions,
high-centering, and other safety conditions [4]. While faithful
models of vehicle dynamics are often available, acquiring an

Fig. 1. Tractor test platform

accurate terrain model that includes a description of the load-
bearing surface and any obstacles in the local environment is
a considerable challenge.

Early work in terrain perception assumed smooth terrain
with discrete obstacles [1] [2], and achieved good results in
these domains by looking at the height of the sensor readings
from individual grid cells. More recent work has included
cluttered environments with vegetation that are much more
difficult because the range points from sensors do not generally
give the load-bearing surface. To handle these challenging
domains, researchers have tried to model various parts of the
problem. A common approach is to model how a range sensor
penetrates vegetation to discriminate between vegetation and
solid objects [3] [5] [6]. Another approach begins with a cloud
of range points and looks for various features or structure at
a local level [7] [8]. We have used online learning methods to
automatically learn the ground height in vegetation from fea-
tures [4]. A common characteristic among these approaches is
that they make the strong assumption of independence between
patches of terrain for estimating ground height or class. We
hope to achieve better results by relaxing this independence
assumption through the inclusion of spatial correlations.

Spatial correlations in images have often been expressed
using Markov random fields [9] [10] and these techniques
have been used for vision problems such as the segmentation
of various land types in satellite images [11], but these
approaches use only 2D image data instead of the 3D data
that is generally available to an off-road robotic system.



In this paper, we describe a generative, probabilistic ap-
proach to modeling terrain. We exploit 3D spatial structure in-
herent in off-road domains and an array of noisy but abundant
sensor data to jointly produce better estimates of the ground
height and more accurate classification of obstacles and other
areas of interest, even in dense non-penetrable vegetation.

Our terrain model consists of two distinct but interacting
Markov random field models (MRFs) and a latent variable for
common vegetation height. One MRF models ground height
and enforces our assumption that ground height is smoothly
varying. The second MRF encodes our assumption that class
patches of space tend to cluster (for example, patches of
vegetation of a single type tend to be found together). The
latent variable for common vegetation height enforces our
assumption that vegetation of the same type generally has
a similar height. These three components interact through a
hidden semi-Markov model (HSMM) that enforces vertical
structural assumptions such as the understanding that vege-
tation grows on top of ground.

The structure in the terrain model is combined with informa-
tion from multiple sensors on the vehicle using sensor models
that are automatically learned from training data. Obstacles are
treated as having uncertain attributes so obstacle appearance
does not need to be explicitly trained.

Joint inference of ground height, class height and class
identity over the whole model results in more accurate esti-
mation of each quantity. For example, inferring the vegetation
height allows for an improved estimate of the height of the
underlying ground. Similarly, knowing the ground height helps
disambiguate solid obstacles from the ground surface.

Our approach allows us to model 3D structure in a rea-
sonably efficient inference scheme. Gibbs sampling over the
MRF structures lets us perform exact inference in the HSMM
models using an efficient dynamic programming algorithm.
This substantially reduces computation time over a fully 3D
MRF model, and allows our system to run in real-time.

II. V EHICLE PLATFORM AND DATA REPRESENTATION

Our project team has automated a John Deere 6410 trac-
tor (see figure 1) and equipped it with many sensors for
localization and perception [4]. The vehicle has a high-
resolution stereo pair of digital cameras, an infrared camera,
and two SICK laser range-finders (ladar) mounted on custom
actively-controlled scanning mounts. The first scanning ladar
is mounted on the roof to get range data over a large area
in front of the vehicle, and the second scanning ladar is
mounted on the bumper to get high density measurements of
nearby terrain and better penetrate upcoming vegetation. The
cameras and scanned ladars are precisely calibrated and tightly
synchronized with an accurate global vehicle pose estimate.

The basic representational structure of our terrain model is
thevoxel: a 15cm3 box-shaped region of 3 dimensional space.
We represent the vehicle’s local spatial environment as a voxel
lattice of size I x J x K, where theijkth voxel is in theijth
position of a horizontal 2D grid and thekth position above an
arbitrary subterranean origin.

Accurate global vehicle pose allows us to assign ladar
points corresponding to the same region of space to the
same voxel. Exploiting the precise synchronization of the
sensors, we project ladar points into the most recent color and
infrared images, so that each ladar point results in a vector
of appearance measurements for that voxel, including laser
remission (reflectance), infrared temperature, and color.1

The voxel representation also allows us to maintain a
density estimate throughout space by comparing how many
ladar rays pass through each voxel (pass-throughs) with the
number of ladar rays that hit something in that voxel (hits).
Density information is valuable when trying to separate sparse
vegetation that contains a mixture of hits and pass-throughs
from solid objects that contain a majority of hits and only a
few pass-throughs due to sensor noise [3] [4].

III. T ERRAIN MODEL

Although our data representation is based on the voxel,
vehicle navigation is generally performed on a 2D surface,
so our ground height estimates and classification results are
made in terms of voxel columns. In our model, theijth
voxel column class is described with a multinomial dis-
tributed random variableCij taking on values related to the
possible contents of the column,Cij = c with e.g. c ∈
{ground , vegetation, obstacle}.

Associated with thekth voxel in theijth voxel column is
the voxel stateXk

ij , a multinomial distributed random variable
that describes the nature of the material inside the voxel,
Xk

ij ∈ {ground , c, free-space}, wherec is the class of theijth
voxel column.2 The ijkth voxel is also associated with the
observation vectorYk

ij = [Yden , Yrem , Yir , Ycol ], containing
vectors ofN ladar hit and pass-through density measurements
of which theM hits include laser remission values, infrared
temperatures and color data (i.e.Yden = [Y 1

den , . . . , Y N
den ],

Yrem = [Y 1
rem , . . . , Y M

rem ]).

A. Observation Models

We assume that voxels form the smallest indistinguishable
element of space, occupied completely by one (and only
one) voxel state. Each voxel state maintains a distribution
over material properties including density, remission, infrared
temperature, and color that describe the characteristics of that
state, but the material inside a single voxel is assumed to be
uniform. For example, the vegetation state may include a range
of colors, and therefore different voxels in vegetation may have
different colors, but we assume that the color of the vegetation
within each voxel is uniform.

The measurement vector,Yk
ij contains a variable number of

noisy measurements of the material properties. The graphical

1The ladar scans come in at a much higher rate than the image data so
multiple scans are projected into the same image. However, the high pixel
density of the images means that we collect approximately 100 pixels for
every ladar point. This coupled with the continual movement of the scanning
ladars makes it unlikely that a single pixel is used more than once, so we treat
each color and infrared tagged ladar point as an independent measurement.

2In our implementation, the possibility of a voxel column simultaneously
containing obstacle and vegetation is excluded, though its inclusion is a trivial
extension of the model we present.
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Fig. 2. A graphical description of the model showing (a) the voxel, (b) the voxel column, and (c) the connections between voxel columns. For each voxel
columnij, the model contains voxel statesXk

ij , observationsY k
ij , and a classCij , class heightHc

ij , and ground heightHg
ij that interact with neighborsNij

and the common class heightHc

model in Figure 2(a) illustrates the conditional independencies
between the voxel stateXk

ij , the material property random
variablesden, rem, ir and col , and the measurements. Con-
ditional on Xk

ij , the material properties are independent, and
conditional on the material properties, the measurements are
independent. The voxel material properties are not directly
observed, and we are not concerned with their values beyond
what they reveal about the state. Thus material properties con-
stitute nuisance variables that we remove from the observation
models through marginalization.

Density values range from empty space (den = 0) to
completely solid (den = 1), and we use a beta distribution
B(ax, bx) to describe the density values of each statex. The
measurements of densityY n

den are binary (ladar hit or pass-
through), so we use a binomial distribution to describe the
number of hitsM =

∑N
n=1 Y n

den out of N total rays. When
we integrate over the nuisance parameterden, we recover the
beta-binomial distribution as the marginal likelihood observa-
tion model.

P (M = m | Xk
ij = x)

=
∫

P (m | den)p(den | Xk
ij = x) d(den)

=
(

N

M

)
B(ax + M, bx + N −M)

B(ax, bx)

(1)

The distributions over the voxel appearance properties,
including infrared temperature, laser remission and color, are
all inherently multi-modal and thus not well described by a
simple parametric distribution. For example, remission values

in vegetation are either high because of the strong reflectivity
of chlorophyll, or very low due to small cross-sectional area.
We resort to a mixture of Gaussians to describe the distribution
of the material properties within a state.

We develop the marginal distribution for the remission
values, but the infrared and color data are determined analo-
gously. The true material propertyrem for statex is modeled
as a mixture of Gaussians with individual mixture meansremi,
variancesσ2

i , and mixing coefficientsP (i).

p(rem|Xk
ij =x) =

R∑
i=1

P (i)
1√
2πσ2

i

exp
(
− (rem − remi)2

2σ2
i

)
(2)

Conditional on the true material propertyrem, the mea-
surementsym

rem are assumed to be normally distributed,
ym
rem ∼ N (rem, σ2

y). As with the density, we integrate out
the nuisance variablerem to get the marginal likelihood for
all the remission datayrem = [y1

rem , . . . , yM
rem ], resulting in a

mixture of Gaussians that is a function of the data meanȳrem .

p(yrem |Xk
ij = x) =

∫
p(yrem | rem)p(rem |Xk

ij = x) d(rem)

=
R∑

i=1

P (i)
∫ M∏

m=1

p(ym
rem | rem)p(rem | remi) d(rem)

=
R∑

i=1

P (i)
1√

2π
(
σ2

i + σ2
y

M

) exp

− (ȳrem − remi)2

2
(
σ2

i + σ2
y

M

)


(3)



Equation 3 shows that the marginal appearance distributions
become more broad when there are few data points (M is
small), reflecting the increased uncertainty in the material
property and hence the state.

The free-spacestate does not possess any meaningful ma-
terial properties beyond densityden. Ladar hits occurring
in free-spaceare generally the result of noise so we model
the non-density material properties as matching the material
properties of the states in contact withfree-space.

Although we expect obstacles to generally have a fairly high
densityden, we cannot hope to build an accurate observation
model for the appearance of each of the innumerable obstacles
one might encounter in outdoor environments, so we simply
use a singleobstacle state with a corresponding uniform
distribution over the observable range of material appearance
properties. We rely on accurately modeling the features of the
trained states to detect obstacles as a default option when none
of the other states are consistent.

B. Mixture of Hidden Semi-Markov Chains of Voxel Columns

When moving from lower to higher voxels within a column,
we expect to move from ground to vegetation, or perhaps
ground to obstacle, and eventually to free-space. We never
expect free-space to be found below ground, nor do we expect
vegetation to be suspended above free-space.

This type of structure is naturally imposed by introducing a
Markov dependency between voxel states that restricts vertical
transitions, thus defining a hidden Markov model within each
voxel column. However, the duration of states such asground
and vegetation are not well modeled as states in a Markov
chain which would induce a geometric distribution on the
duration of states. We resort instead to a hidden semi-Markov
model (HSMM) [12] over voxel states, which explicitly rep-
resents a state duration (or height distribution) over voxels for
each state value.

As shown in figure 2(b), we associate a single HSMM
chain structure with each column classCij , which makes the
resulting column model a mixture of HSMMs. The durations
of the ground and class states describe the height of those
terrain elements and are given byHg

ij andHc
ij .

C. Markov Random Field Model of Interacting Voxel Columns

The HSMM column models capture the vertical structure
between the states, but there are also significant horizontal
dependencies between neighboring columns. As shown in
Figure 2(c), we model these dependencies using two distinct
but interacting Markov random fields (MRFs) [10] for class
Cij and ground heightHg

ij , each dependent on the values
of their respective neighbors, and a latent variable for the
common class heightHc across all columns. These variables
interact through the HSMM column models by imposing a
prior on the state durations associated withHc

ij andHg
ij and

imposing a prior over HSMM class modelsCij .
The neighborhood dependency ofCij reflects the prior

assumption that class identities are positively correlated with
their neighbors so voxel columns tend to cluster in contiguous

groups of the same class. We express this preference using the
conditional MRF distribution

P (Cij = c | CNij ) ∝ exp
(
−λC

∑
{s,t}∈Nij

(c 6= cst)
)

(4)

whereNij is the set of neighboring indices andCNij is the
set of classes in the neighborhood of theijth voxel column.

Ground height varies smoothly from one patch of ground
to the next, so we expect thatHg

ij will be tightly correlated
with nearby values. We express this belief using a Gaussian
Markov random field

P (Hg
ij = h | Hg

Nij
) ∝ exp

(
− 1

2σ2
G

(
h− 1

|Nij |
∑

{s,t}∈Nij

hg
st

)2)
(5)

where|Nij | is the size of the neighborhood.
We expect that vegetation of the same classc has a similar

height Hc with some variation. This assumption may not be
valid for obstacles, so we only apply it to vegetation classes.
Given the common height of the vegetation in this areaHc,
we model the expected variation with a Gaussian

P (Hc
ij = h | Hc) ∝ exp

(
− 1

2σ2
Hc

(h− hc)2
)

(6)

IV. I NFERENCE

The interacting Markov random fields of this model capture
important structure, but these dependencies prevent analytic
determination of the posterior distributionP (C,Hg,Hc | Y ).
The set of HSMMs that describe the data in each column
of voxels can efficiently produce distributions over the state
durations, which makes it easy to sample from the conditional
distribution

P (Cij ,H
g
ij ,H

c
ij | Yij , CNij

,Hg
Nij

,Hc) (7)

so we use Gibbs sampling [9] for approximate inference.
Algorithm 1 gives the application of Gibbs sampling to our

model. The HSMM column models require a distribution over
class heights which comes from the common class height
latent variableHc, as shown in Figure 2(c). Samples of
the common class height are produced from its conditional
distribution given the current column class height sampleshc

ij

P (Hc=h |Hc
ij∈IJ) ∝ exp

( −1
2σ2

Hc/Dc

(
h− 1

Dc

∑
ij∈IJ,cij=c

hc
ij

)2)
(8)

whereDc is the number of columns with classc.
Once the common class heightsHc have been sampled,

each voxel column is sampled. The first step of the sampling
procedure is to find the priors over classCij , class height
Hc

ij and ground heightHg
ij from the neighbors, as given in

equations 4 and 5, and the common class heightsHc as given
in equation 6. The priors onHc

ij andHg
ij are then incorporated

into the HSMM model as priors over state durations and are
shown in the subsequent equations asP (Hc

ij = h | Hc) for
the class statex = c or P (Hg

ij = h | Hg
Nij

) for the ground
statex = g.



Algorithm 1 Gibbs sampling from the model

Sample common class heightshc from P (Hc | Hc
ij∈IJ)

using all the column class height samples of the same class
for all MRF voxel columnsij do

Find ground and class priors from neighbors:
P (Hg

ij | H
g
Nij

)
P (Cij | CNij )

for all Classesc do
Find class height prior from common class height of
same class:

P (Hc
ij | Hc)

Use class HSMM to find probability of the data and
distributions over the ground and class height:

P (Yij | Cij = c,Hg
Nij

,Hc)
P (Hg

ij | Cij = c, Yij ,H
g
Nij

,Hc)
P (Hc

ij | Cij = c, Yij ,H
g
Nij

,Hc)
end for
Compute class distribution:

P (Cij | Yij , CNij
Hg

Nij
Hc)

∝ P (Yij | Cij ,H
g
Nij

Hc)P (Cij | CNij
)

Samplecij from P (Cij | Yij , CNij
,Hg

Nij
,Hc)

Samplehg
ij from P (Hg

ij | Cij = cij , Yij ,H
g
Nij

,Hc)
Samplehc

ij from P (Hc
ij | Cij = cij , Yij ,H

g
Nij

,Hc)
end for

Once the prior distributions are found, the class HSMM
structures are used to find the probability of the data and the
state duration probabilities for each class. HSMMs use a vari-
ant of the standard forward-backward dynamic programming
solution used for inference in regular HMMs [12]. As shown
in figure 2(b), an HSMM maintains durations (corresponding
to height in our case) so that a single state is active over a
number of spatial steps up the chain. This formalism is very
natural for finding ground height or class height because the
neighborhood information can be included as a prior on the
corresponding state duration.

The forward-backward computations are still performed
over the individual spatial stepsXk

ij as in an HMM, but an
HSMM must solve for the duration of each state, so in addition
to summing over possible state transitionsx′, we also sum
over possible state durationsh. Equations 9 and 10 give the
HSMM forward and backward probabilitiesαk

ij,c andβk
ij,c for

spatial stepk of the classc chain in MRF voxel columnij.
We use the observation independencies and the deterministic
transitions of our chain structures to reduce the computational
complexity. We use the notationx− and x+ to refer to the
previous and next states in the chain of the current class.

αk
ij,c(x) = P (statex ends atk, Y 1:k

ij | Cij = c,Hg
Nij

,Hc)

=
∑
x′

∑
h

P (Xk
ij =x, Xk−h

ij =x′,Hx
ij =h, Y 1:k

ij |Cij ,H
g
Nij

,Hc)

=
∑

h

k∏
k′=k−h+1

P (Y k′

ij | x)P (Hx
ij = h | Hg

Nij
,Hc)αk−h

ij,c (x−)

(9)

βk
ij,c(x) = P (Y k+1:K

ij | statex ends atk,Cij = c,Hg
Nij

,Hc)

=
∑
x′

∑
h

P (Y k+1:K
ij |Xk

ij =x,Xk+h
ij =x′,Hx+

ij =h,Cij,H
g
Nij

,Hc)

=
∑

h

k+h∏
k′=k+1

P (Y k′

ij | x+)P (Hx+

ij = h | Hg
Nij

,Hc)βk+h
ij,c (x+)

(10)

Since we know by assumption that the chain must end in
the final statex = free-space, the probability of the data for
classc is the final value ofα in that state.

P (Yij | Cij = c,Hg
Nij

,Hc) = αK
ij,c(x = free-space) (11)

As described in Algorithm 1, this is combined with the class
prior P (Cij | CNij ) to find the distribution over classes, which
is used to sample a new class.

Finding the distribution over state durations involves com-
bining α andβ.

ζx
ij,c(h) = P (statex has durationh | Yij , Cij = c,Hg

Nij
,Hc)

=
∑

k

P (Xk
ij = x, Xk−h

ij = x− | Yij , Cij ,H
g
Nij

,Hc)

=
∑

k

k∏
k′=k−h+1

P (Y k′

ij |x)P (Hx
ij =h|Hg

Nij
,Hc)αk−h

ij,c (x−)βk
ij,c(x)

(12)

We know that in each chain, every state transition must occur
after some duration, so we can normalize by

∑
h ζx

ij,c(h) to
get the posterior on ground and class height conditional on the
neighbors. Samples are then drawn from these distributions.

P (Hg
ij = h | Cij = c, Yij ,H

g
Nij

,Hc) = ζx=ground
ij,c (h)

P (Hc
ij = h | Cij = c, Yij ,H

g
Nij

,Hc) = ζx=state c
ij,c (h)

(13)

The time complexity of HSMM calculations is greater than
an HMM because of the sum over possible durations, but the
observation likelihood products can be pre-computed and the
state durations to search over can be constrained based on the
priors to reduce the complexity toO(numVoxels∗numStates∗
maxDuration) for a single chain.

Although it is typically difficult to show that Gibbs sampling
has converged, we have found empirically that the model finds
a good estimate quickly, allowing for real-time execution.

V. L EARNING

The model described in section III incorporates prior knowl-
edge about the structure of the environment, but the specific
model parameters must be learned from training data. These
parameters include the sensor observation models for each
state and the neighborhood interactions for class, class height,
and ground height. The generative nature of our model allows
us to decouple the learning problems, and train each of these
observation and neighborhood interaction models individually,
thus greatly simplifying the learning task.



A. Observation Models

Collecting labeled training data is often expensive, es-
pecially in outdoor environments where there can be high
variation in sensor readings so that a large training set is
needed. We use an approach based on [4] to collect large
quantities of labeled training data to automatically train our
observation models. Specifically, we drive through represen-
tative terrain of a single class such asvegetationand store
the sensor measurements from the voxels of columns that we
drive over as training examples for that class. This process
is then repeated for other classes such asground. Unlike
[4] which directly trains on the height of different types of
vegetation, we only train on the various material properties
of vegetation voxels, allowing us to remain general across
vegetation heights.

Each labeled voxel collected by driving through represen-
tative terrain is used as a training example for the observation
models in equations 1, 2, and 3. For appearance data such as
remission, infrared and color, the mean values from each voxel
are used to train the GMM observation models (i.e.remi, σ2

i ,
P (i) in equation 2) and the variance of measurements within
the voxels is used as the GMM measurement model variance
(σ2

y in equation 3).
Hit and pass-through data from the labeled training voxels

are used to find the maximum likelihood parameters of the
beta-binomial density model (ax and bx in equation 1) for
each class statex using a Newton-Raphson method[13]. This
handles class states likegroundandvegetation, but the density
of obstacleandfree-spacestates must also be trained. Thefree-
spacedensity can be trained using data that includes insects
or dust that occasionally returns a ladar point, or it can just
be set manually to strongly favor empty space. Similarly, the
obstacledensity can be trained using hit and pass-through data
from representative obstacles, or it can be set manually to favor
dense objects.

B. Neighborhood Models

The priors given in equations 4 and 5 describe how class
and ground height depend on their neighbors, and the prior
in equation 6 describes how column class heights are related
to the common class height. Each of these priors contains a
parameter that gives the strength of the prior, and describes
how much classes tend to clump together, how smooth the
ground is, and how little class heights vary. As above, we
train these parameters by driving over representative terrain.

As we drive over an area, we record the ground heights
measured by the location of our wheels. We use these height
sequences to find the standard deviationσG of typical ground
height variation between voxel columns, which gives us the
maximum likelihood estimate of our Gaussian MRF ground
neighborhood prior.

Similarly, as we drive through vegetation, we get an approx-
imate vegetation height measurement by taking the highest
ladar hit and subtracting the known ground height (from the
wheel locations). Since we assume that vegetation heights are
independent given the common vegetation height in the area,

we can find the class prior standard deviationσHc directly
from this sequence of class heights.

The class interaction priorλC gives the probability that a
class transitions to a different class. This could be estimated
directly with class-labeled data over a large area that includes
many class transitions, but unlike the labeled data for the
observation models or the ground and class height interactions,
this type of training data is difficult to collect. However,
changing the class interaction prior affects the system output
in an intuitive way by controlling how much classes tend to
clump together, so this parameter can be set manually.

VI. RESULTS

We have tested this model in a nearby working farm and
an undeveloped area with tall weeds. The following three
examples demonstrate the improved performance gained from
using the structure we have built into our model.

In each case, after training the model on representative
terrain, we drive the vehicle through the test area, while letting
the Gibbs sampler run continuously. Running at 1Hz, the
system calculates observation likelihood products, computes
samples from the model, and updates the local terrain map
with the maximuma posteriori (MAP) class label, mean
ground height, and mean class height from the samples in
each column.

A. White shed

Figure 3 shows the view from the tractor as it approaches
a white shed. This is a large obstacle that could be reliably
detected in a variety of ways, but it will serve as a good
example of how the various pieces of our model interact
to produce the correct result. Figure 4 shows the output of
our model including the MAP class labels: obstacle (red),
vegetation (green), ground (gray), and the mean ground height
for driveable areas. Obstacle columns are shown at their class
height. The model produces a reasonable classification of the
scene and a smooth ground estimate that would work well for
vehicle navigation. It classifies the shed as an obstacle and
correctly captures the hill sloping down to the right despite
the presence of sparse vegetation.

This example is interesting because on a voxel basis the
ground class is much more likely than the broad uniform
obstacle class for the voxels from the shed. However, the MRF
and HSMM spatial constraints imposed on the ground surface
make it extremely unlikely that the ground height would have
a tall step discontinuity at the shed wall. Since the density and
appearance data are not well described by the vegetation class,
the shed is correctly classified as an obstacle.

Figure 5 shows the output of the system when the neigh-
borhood interactions are ignored and the columns are as-
sumed to be independent. Without neighborhood information,
classification is based solely on the data likelihood for each
column HSMM model. Lacking the smooth ground prior, the
wall is classified as a collection of tall columns of ground
voxels. Figure 5 also shows that without the ground and class
priors, the ground height estimates and classification labels are
generally more noisy.



Fig. 3. View from the tractor of a white shed Fig. 4. System output, including ground heights
and classification

Fig. 5. Independent voxel column output with
neighborhood interactions turned off, showing in-
correct classification of the shed

Fig. 6. View from tractor of tall weeds, low grass,
person, and small dirt mound

Fig. 7. System output, including ground heights
and classification

Fig. 8. Lowest hit or pass for ground height in
vegetation and independent classification, showing
poor ground height estimates and misclassifications

B. Tall vegetation

Figure 6 shows the view from the tractor in a challenging
scene: a camouflaged person in tall weeds with low grass and
a small dirt mound to the right. Both the person and the dirt
mound have high infrared temperature. We trained on the two
types of vegetation and bare ground. Figure 7 gives the mean
ground heights and MAP classification results. Inference over
the model results in the correct classification of the person
and the dirt mound, as well as the two types of vegetation.
The area to the right of the person in the shadow of the tall
weeds is classified as ground. Although that area is actually
low grass, since the system has no data from the area, ground
is a reasonable estimate.

Using the model structure and the known ground height
under the vehicle allows the system to produce reasonable
estimates of the ground height even in areas where the ground
is hidden. In addition to providing a smoothing prior, neigh-
borhood interactions allow information to propagate. Fixing
the heights under the wheels affects the ground estimates in
the surrounding area. Columns with little or no data can still
produce useful estimates using their neighborhood. The system
can infer the common vegetation height of the tall weeds from
areas where it is observable, such as under the vehicle or the
transition to tall weeds behind the person. The assumption of
vegetation height similarity then allows the system to infer
the ground height in areas where the ground is not directly
observable. Knowing the ground height allows the model to

explain the dirt mound as a rise in the ground but the person
as an obstacle.

The range points do not penetrate the tall weeds in this
example, as shown in Figure 8, which uses the lowest hit
or pass-through in each vegetation column for ground height
and the MAP class labels when no neighborhood information
is used. Assuming independence prevents information from
propagating and the resulting ground height estimates are poor.
Also, both the person and the dirt mound contain a mixture
of obstacle and ground classes.

Figure 9 shows a plot of the quality of the ground height
estimates from Figures 7 and 8. After computing estimates
of the ground height using our model, we drove through
the scene toward the area between the person and the dirt
mound, and made measurements of the ground height using
our wheel locations. This trajectory is marked as “True height”
in Figure 9, and offers a comparison for the estimates produced
by the model and those using the lowest hit or pass-through in
each column. The model ground estimates are fairly smooth
and stay within approximately 20cm of the true value.

As another comparison, we show an approach that adjusts
the lowest hit in each column based on that column’s indepen-
dent classification. Instead of using spatial structure to infer the
vegetation height from the data as in our model, this approach
simply uses the average height of each class from the training
data for the offset. Figure 9 shows that this can work well when
the classification is correct and the actual vegetation height
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Fig. 9. Comparison between ground estimates of the area in Figures 7 & 8
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Fig. 10. Comparison between ground estimates for longer test path, showing
predictions made 6m in front of the vehicle as the vehicle drove

matches the training data, but it suffers from misclassification
and the lack of a smoothing prior.

C. Longer run through varied vegetation

Figure 10 shows ground height estimates for a longer test
set through varied vegetation. Unlike Figure 9, which presents
a snapshot of the predictions at different distances in front of
the vehicle at a given time, Figure 10 shows predictions 6m
in front of the vehicle over time as the vehicle drove. The
lowest hit line shows that the first 70m of the path contains
two sections of tall dense non-penetrable vegetation, and the
remainder of the path has low vegetation with various tall
sparse vegetation and a few small patches of dense vegetation
(e.g. 170m). The model output is generally smooth and closely
matches the true height, whereas the lowest hit rarely reaches
the ground, and the lowest hit with class offset is often
correct but very noisy because of misclassifications due to
its independence assumption.

VII. C ONCLUSIONS ANDFUTURE WORK

We have described a novel model structure that allows
multiple Markov random fields to interact through a hid-
den semi-Markov model for improved ground height estima-
tion and classification for outdoor navigation. This structure
enforces spatial constraints within a column and between

neighboring columns. The model provides a natural way of
combining different types of sensor data. It can find obstacles
without needing to explicitly model them or collect obstacle
appearance training data. It can infer vegetation height to
produce estimates of the supporting ground surface even when
the ground is hidden by dense vegetation. Except for the
class neighborhood prior, the sensor and interaction model
parameters can be easily trained by simply driving through
representative areas. The system runs in real-time on real
data and we showed that including the neighborhood structure
significantly improved both the ground height estimates and
the obstacle classification over an equivalent model without
neighborhood interactions.

We are currently working on several improvements to the
model. The system is set up essentially as a batch process,
even though data is continually coming in and the sampling
procedure continues over time. We would like to make it
a true online algorithm. We are experimenting with further
class models to handle hanging obstacles and holes. Finally,
we are looking into belief propagation and other approximate
inference schemes that might be less computationally intensive
than Gibbs sampling.
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