Learning a Terrain Model for Autonomous
Navigation in Rough Terrain

Carl Wellington

CMU-RI-TR-05-59

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

December 2005

Thesis Committee:
Anthony Stentz, Chair
Alonzo Kelly
Jeff Schneider
John Reid, John Deere

©CARL WELLINGTON MMV

This research was sponsored in part by John Deere under contract 476169

Abstract

Current approaches to local rough-terrain navigation are limited by their ability to build
a terrain model from sensor data. Available sensors make very indirect measurements of
quantities of interest such as the supporting ground surface and the location of obstacles.
This is especially true in domains where vegetation may hide the ground surface or partially
obscure obstacles.

This thesis presents two related approaches for automatically learning how to use sensor
data to build a local terrain model that includes the height of the supporting ground
surface and the location of obstacles in challenging rough-terrain environments that include
vegetation. The first approach uses an online learning method that directly learns the
mapping between sensor data and ground height through experience with the world. The
system can be trained by simply driving through representative areas. The second approach
includes a terrain model that encodes structure in the world such as ground smoothness,
class continuity, and similarity in vegetation height. This structure helps constrain the
problem to better handle dense vegetation.

Results from an autonomous tractor show that the mapping from sensor data to a ter-
rain model can be automatically learned, and that exploiting structure in the environment
improves ground height estimates in vegetation.

Acknowledgements

First, I would like to thank my advisor Tony Stentz for his insight, excitement, and the
freedom he gave me. I'd like to thank committee members Al Kelly and Jeff Schneider for
their valuable feedback that kept me on track.

Thanks to John Reid, Zach Bonefas, and the rest of the robotics team at John Deere
who have been extremely supportive of this work and have been active partners in the
project by providing feedback and expertise in the problem domain, as well as working
hard to create a project schedule that allowed real research accomplishments to occur.

I'm especially thankful for the great collaboration with Aaron Courville on the spatial
modeling work in this thesis, even when our discussions would more often turn to caribou.

I feel very fortunate to have worked with Cris Dima, the other half of the autonomous
tractor project. He has been there from the beginning, and regardless of the task or the
hour, I could count on him to carry his share and then some.

Thanks to Drew Bagnell for his insight and for our enlightening discussions, whether at
the whiteboard or on the bike trail, and to Sidd Srinivasa for his valuable feedback.

My thanks to Herman Herman for having such a wonderful name and solving all forms
of problems on our project, and thanks to all the other people at REC who made our tractor
project possible.

I would like to thank Jeff Schneider for the use of his code for locally weighted learning
and Stefan Schaal for the use of his code for incremental locally weighted learning.

Thanks to Janet Mather for helping me stay productive in the final stretch and remind-
ing me to keep breathing.

Many thanks to my parents Nancy and David Wellington, for encouraging me and
supporting me from the very beginning.

Finally I'd like to thank my wife Jenny for so many things, but especially for under-
standing and optimism even when the hour is late, and for making me laugh always.

This research was sponsored in part by John Deere under contract 476169

Contents

1__Introductionl 1
(1.1 Applications|. 1
[1.2 Local Rough-Terrain Navigation| 3
(L3 Problem Statement|. Lo oo 6
L4 Previous Workl 7
(Lb Thesis Statement] 9
[1.6 Ovwverview of Approach| L Lo 9
[1.7 Organization| e 12
2 Related Work in Rough-Terrain Navigation| 13
2.1 Global Planning] 13
[2.2 Local Rough-Terrain Navigation| 14
2.3 Agriculture] 19
2.4 Learning Terrain Parameters| 19
2.5 Summary] 20
|3 Online Learning| 21
[3.1 Approachl 21
[3.2 Adaptive Controll 22
[3.3 Assumptions| L 24
[3.4 Challenges of Online learning] 25
|4 Learning a Terrain Model with Independent Cells| 27
4. QAININE] . . v v v v v e e e e e e e e e e e e e e e e 27
4.2 Feature Extraction| L 29
4.3 Function Approximation (Learning)| 32
BA Resultsl. . . . o oo oo e e e e e 37
[4.5 Summary and Limitations| 45
6 _Markov Models 47
b.1 Markov Chains and Hidden Markov Modelsl 48
6.2 Markov Random Fieldd 54
|6 Learning a Terrain Model with Spatial Dependencies 63
[6.1 Spatial Correlation Assumptions| 63

[6.2 Data Representation| 64

|7 Comparison|

[7.1 Test Environment and Training|

[7.2 'lransition to Dense Vegetation|

[7.3 Long Test Set|

8 Conclusion|
[8.1 Summary|

8.2 Contributions

|A System Description|
AT Sensord

[A.2 Kalman Filter Positioning Examplef. 000,

[A.3 Laser Accuracy Bump Testg|
[A.4 Low Level Steering Control|

[References|

91
91
92
94

101
101
101
101
102

109
109
109
114
115

117

List of Figures

1.1 Automated tractor test platform| 0L 3
1.2 Laser map of farm test site] 4
1.3 Elevation map of farm test site| oL 4
[1.4 Hit and pass voxel data] oo 5
1.5 Penetrable vegetation| L Lo 6
[1.6 Non-penetrable vegetation| 6
[1.7 Learning a terrain modell o oo 10
1.8 Data ambiguity] 11
1.9 Example scenel 12
[1.10 Example model output|. o 12
[3.1 Learning terrain height predictions| o000 22
13.2 Block diagram of proposed approach| oL 23
13.3 Undetectable rock hidden in vegetation| 25
13.4 Partially unobservable true ground height due to wheel sizef 25
4.1 Steps of learning approach|. o o000 27
4.2 Traversable terrain| L Lo 28
|4.3 Approach for training traversable terrain|. 28
4.4 Untraversable obstaclel 28
4.5 Intertace showing manual training of untraversable obstacle| 28
4.6 View from tractor of grass to tall weeds transition| 31
4.7 Highest point feature|. oo 31
4.8 Lowest point feature| 31
4.9 First shape matrix feature|o oL 31
|4.10 Pass-through ratio feature| oo oo 31
(411 Laser remission featurel. o oo 31
[4.12 Linear regression for a linear model|. o000 33
|4.13 Linear regression for a nonlinear modell 33
EIZTWERI. .« - o o o e e e e 33
4.15 LWR with incorrect bandwidthl00 33
EICBEWR . . o oo oo e 33
[4.17 REFWR with incorrect bandwidth after trainingl 33
|4.18 Function approximator example|.o 0oL 36
[4.19 Adapting to Environmental Changel 37

[4.20 Person kneeling next to sparse vegetation| 38

4.21 Highest point surface|. oo 38

[4.22 Lowest point surface| L 38
4.23 Learned result surfacel oo o 38
[4.24 Person kneeling behind sparse vegetation| 39
[4.25 Highest point surtace].o 39
[4.26 Lowest point surface| 39
(427 Learned result surfacd o ..o 39
|4.28 'Tractor driving through weeds on a slope| 40
[4.29 Lowest point surface| L 40
4.30 Learned result surfacel L oo 40
[4.31 Learned result roll predictions|. L oL 40
[4.32 View from tractor of grass to tall weeds transition| 42
|4.33 Learned result without adaptation| 42
|4.34 Adaptation without previous learningl 42
|4.35 Learned result with online adaptation| 42
4.36 View from tractorl 44
|4.37 Learned height predictions|. 44
|4.38 Side view showing ground predictions and input datal. 44
14.39 Side view showing +30 prediction intervals| 44
|4.40 Height prediction comparison for left wheel| 44
|4.41 Height prediction comparison for right wheell 44
[4.42 Data ambiguity]o 46
[5.1 Graphical model of a hidden Markov model (or Kalman filter) 48
[p.2 Filtering vs. Smoothing| 49
5.3 State duration prior for an HMM and HSMM| 52
5.4 Intwition for a hidden semi-Markov modell 53
5.5 Graphical model of a Markov random field] 55
5.6 GMREF example with correct parameters|. 59
5.7 GMREF example with incorrect parameters|. 59
5.8 GMREF over-smoothing an obstaclel 59
6.1 Graphical description of the terrain model| 66
|6.2 Laser remission training datal o Lo 69
— - - 69

69

69

6.6 Simulation example] Lo oo 78
6.7 Simulation example - ground height| 00000 78
6.8 Simulation example - class height|. 00000 78
6.9 View from tractor of transition from low grass to tall weeds 80
|6.10 Lowest hit or pass with independent column classifications|. 80
[6.11 Ground height predictions| oL 80
16.12 Class height predictions| o 80
16.13 Ground height prediction comparison for lett wheel 80

|6.14 Ground height prediction comparison for right wheel| 80

|6.16 System output, including ground heights and classification|. 82
16.17 System output with neighborhood interactions turned offf 82
16.18 View from tractor of tall vegetation, person, and small dirt mound| 83
16.19 Infrared data showing high temperature of person and dirt mound| 83
[6.20 Ground height predictions| 83
[6.21 Class height predictions|, 83
16.22 Lowest point with independent classifications| 83
16.23 Ground height prediction comparison| 83
16.24 View from tractor of slope with vegetation|. 85
|6.25 Data of slope with vegetation| 85
16.26 Spatial model ground height predictions and classification| 85
16.27 Lowest hit or pass-through and independent classification| 85
16.28 ‘Tractor approaching ledge hazard from thetop| 86
16.29 Ledge from the bottom| oL 86
[6.30 Ledge from the bottom| o L. 87
16.31 Class height| 87
[6.32 Ground height| 87
6.33 Class height (side view)| L 87
6.34 Ground height (side view)| L o 87
|6.35 View from the tractor as it approaches the ledge from the top|. 89
[6.36 Data from abovel 89
[6.37 Data from thesidel 89
16.38 Ground height estimates|. L o 89
16.39 Lowest hit or pass-through and independent classification| 89
M1 TestAeldl o o 92
[[2 Transition to tall weeds 92
[7.3 Colorrange datal 92
7.4 Independent ground predictions|. 93
[7.5 Spatial model ground predictions and class| 93
[7.6 Side view showing independent ground predictions| 93
[7.7 Side view showing spatial model ground predictions and class| 93
[7.8 Height prediction comparison for left wheel| 93
[7.9 Height prediction comparison for right wheell 93
[7.10 Profile of comparison test path| o000 94
[7.11 Lowest hit or pass summary results[. 97
[7.12 Lowest w/class adjustment summary results|. 97
[7.13 Independent online summary results| 97
[7.14 Independent online (no adaptation) summary results| 97
[7.15 Spatial model summary results| o000 97
[7.16 Flat predictions summary results| o000 97
[7.17 Lowest hit or pass path results| 98
[7.18 Lowest w/class adjustment path results| 98
[7.19 Independent online path results|. 99

[7.20 Independent online (no adaptation) path results| 99

[7.21 Spatial model path results| oo oo 100

[7.22 Flat predictions path results|. oo 100
8.1 Independent conditional modell oo 0000000 103
82 Conditional modell oL 103
8.3 Markov random field generative model 000000 103
8.4 Conditional random field conditional modell 103
8.5 Voxel density problem| o o oo 107
[A1 Vehiclesensord 110
[A.2 Kalman filter example]o oo 112
[A.3 Kalman filter errorl 112
[A.4 Plot of height variance as a function of speed for different ranges| 114
A.5 Roll and pitch rates for the 10 km/hour test run over a logl 114
A.6 Map result for the 10 km/hour test run over alog 115
|[A.7 Low-level steering control law| 116

|A.8 Steering response to step input|o 116

Chapter 1

Introduction

Automated vehicles that can safely operate in rough terrain hold great promise. They
could improve safety by removing people from dangerous environments, they could increase
productivity by allowing robots to perform dull and repetitive tasks, they could yield en-
vironmental benefits from more precise operation, and they could offer a greater ability to
explore difficult or dangerous domains on earth and other planets.

Even if a vehicle is not fully autonomous, there are benefits from having a vehicle
that can reason about its environment to keep itself safe. Such systems can be used in
safeguarded teleoperation or as an additional safety system for human operated vehicles.

Capable and safe automated vehicles would benefit many applications in agriculture,
mining, and the exploration of hazardous areas. Operating in the outdoor environments
common in these applications requires a vehicle to recognize untraversable areas and terrain
interactions that could cause damage to the vehicle. This is a challenging task because
available sensors make very indirect measurements of quantities of interest such as the
supporting ground surface and the location of obstacles. Vegetation further complicates
the situation by covering and hiding the supporting ground surface, preventing a purely
geometric interpretation of the world. In many agricultural applications, the vehicle is
required to drive through vegetation, and in more general off-road exploration tasks, driving
through vegetated areas may save time or provide the only possible route to a goal.

1.1 Applications

There are a number of applications that would benefit from an automated vehicle that can
operate in rough terrain. These applications are mostly characterized by traits that make
automation appealing such as repetition, precision, or a dangerous environment. How-
ever, these applications are generally outdoors in unstructured or semi-structured areas
with many challenges and hazards that prevent factory automation techniques from being
successful.

Chapter 1. Introduction

Agricultural tasks are generally repetitive and performed in
a known environment that often has structure such as crop
rows that can be exploited as navigation aids. The vege-
tation in agricultural settings usually has a fairly constant
height, which can be used to estimate where the ground
is even when it’s hidden by dense vegetation. Prior maps
are often available, and different tasks such as planting and
harvesting are performed over the same piece of land so a
system can use previously trained paths. Precision agricul-
ture has already brought gps-based mapping and guidance
to these domains, and further automation would allow new
techniques such as spraying at night, when less pesticides
can be used because the bugs are more active and the winds
are lower. These domains also present challenges because
environmental conditions and the terrain can change, vege-
tation prevents a purely geometric view of the world, a large
variety of obstacles can be present, and people, animals, and
other vehicles can enter the workspace unexpectedly.

Surface mining is another repetitive task in a constrained
environment. There is often little vegetation and access to
these areas is limited, but vehicles need to move fast over
changing terrain through different weather conditions, often
with other people or vehicles in the area.

Robotic vehicles can perform exploration, search and res-
cue, and data collection in difficult or hazardous areas on
earth and in space. Terrestrial applications include haz-
ardous areas due to nuclear waste, pollution, land mines,
war, or extreme environmental conditions. There is often
uncertainty in the environment in these cases, and the sys-
tem may need to handle vegetation and obstacles.

Environments beyond our planet are very hazardous for hu-
mans and present a natural application of robotic technol-
ogy. Current rovers exploring Mars travel very slowly and
conservatively, but future missions will require larger rovers
that can cover great distances. We do not expect vegeta-
tion to be an issue for these missions, but achieving the
higher performance desired for future missions may require
an adaptive approach because many characteristics of these
areas are unknown.

1.2. Local Rough-Terrain Navigation 3

Figure 1.1: Automated tractor test platform (John Deere 6410)

Position sensors: differential GPS, 3-axis fiber optic vertical gyro, Doppler radar ground
speed sensor, steering angle encoder, four custom wheel encoders

Terrain sensors: high-resolution stereo pair of digital cameras, infrared camera, two SICK
laser range-finders mounted on custom actively-controlled scanning mounts

1.2 Local Rough-Terrain Navigation

Autonomous navigation in rough terrain requires consideration of how the vehicle will in-
teract with upcoming terrain in order to keep the vehicle safe, as well as avoiding obstacles
such as people that the vehicle could harm. Although the high-level planning problem is
important for a fully autonomous system, this work focuses on the local navigation prob-
lem, where the goal is to follow a predefined path or head towards a known destination
while staying within various safety constraints. This evaluation is limited to the local area
near the vehicle, where sensor information about the terrain is available. Depending on the
specific application, the vehicle should avoid an unsafe area on the path or stop and call for
help. We consider terrain that is common in the applications listed above including slopes,
ditches, and vegetation, as well as relevant obstacles such as people, equipment, posts, and
buildings.

A typical robot that operates in these types of environments has a set of sensors that
give it an estimate of its position and another (perhaps overlapping) set of sensors that
measure the terrain in its local environment. Figure shows the test vehicle used in this
thesis (see appendix |A| for more details). Most sensors for position estimation are fairly
low dimensional and directly produce quantities of interest about the state of the vehicle.
A wheel encoder measures forward motion, a gyro measures yaw rate, and gps measures
global latitude. The measurements are not perfect, but accurate noise models are known
for these sensors, and effective approaches for combining the various sensors such as the
Kalman filter [Maybeck, 1979a] have been successfully used in practice for decades.

On the other hand, sensors that measure the environment, such as stereo color cameras,
laser range-finders, infrared cameras, and radar produce massive quantities of data, but
cannot directly measure many quantities of interest such as the height of the supporting
ground surface in vegetation, the friction coefficient of the terrain ahead of the vehicle, or the

4 Chapter 1. Introduction

Figure 1.3: Elevation map of farm test
site buildings (tractor is in lower right of
figure using the mean height in each
grid cell. Model predictive control show-
ing the chosen arc along the path and un-
safe arcs to the left due to the steep slope
and to the right due to the farm building.

Figure 1.2: Map of farm test site build-
ings using both ladars as the vehicle
drove on a path to the field. The top fig-
ure shows laser reflectance, and the bot-
tom figure shows the colorized points (the
color camera has a narrower field of view
than the laser).

location of obstacles. This thesis will explore methods of using these indirect measurements
to find such quantities of interest.

We assume range sensors such as stereo cameras or the scanned ladars on our test plat-
forms are calibrated and registered with the vehicle pose so sensor data can be accumulated
into a high quality global terrain map (see Figure . We project range measurements
back into the camera image planes to tag each range point with color and infrared data. The
system maintains a grid representation of the area around the vehicle to hold the data from
the forward looking sensors. This approach makes it easy to combine range information
from multiple sensors and to combine sensor information over time as the vehicle drives.

We use an approach similar to [Lacaze et al., 2002] to take advantage of the added
information about free space that a range measurement provides (see Figure . Each
grid cell contains a column of voxels that record the locations of any hits in that volume
of space, as well as the number of rays that pass through that voxel. Maintaining these
statistics enables us to compute a rough density estimate to help discriminate between
penetrable vegetation and solid obstacles.

To reduce the dimensionality of the data, features can be computed for each grid cell. For
example, Figure [I.3] shows an elevation map corresponding to the lower right of Figure [I.2]
that uses the average height of all the points in each cell.

1.2. Local Rough-Terrain Navigation)

[] Passes only
[Hits and passes
|| B Mostly hits

Figure 1.4: A vertical slice of the voxel data structure in a scene with thin vegetation and a
solid obstacle. Range measurements are traced through the voxels, which keep track of hits
and pass-throughs to separate free-space, vegetation, and ground or other solid substances.

Autonomous navigation in rough terrain has been successfully implemented within a
model predictive control framework as a search through speed and steering angle commands
over a fixed path length [Kelly and Stentz, 1998b]. In this framework, a vehicle model is
used with a terrain model to predict the behavior of the vehicle for different control inputs,
and then the predictions are evaluated to choose the best control. Figure gives an
example of this approach. A set of controls are sampled from the space of possible speed
and steering angle commands, and the vehicle and terrain models are used to predict the
result of using these controls. The vehicle model includes system delays and the dynamics
of the steering actuation to produce feasible arcs.

A kinematic model of the vehicle is then placed on the terrain map at regular intervals
along the predicted trajectory, and the heights of the four wheels are found in order to
make predictions of the vehicle roll and pitch and ensure that the front rocker suspension
is within limits. The heights of the terrain cells under the vehicle are used to check for
clearance hazards. The vehicle model can be extended to include various implements so
that they are checked for clearance hazards as well.

Once a set of possible arcs are found that satisfy the safety constraints, a cost function
is used to evaluate the arcs to find the best control. For path tracking, the cost is the
error between the arc and the desired path. If a destination does not have a specific path
associated with it, the cost is defined as the minimum distance between the arc and the goal
point. By choosing the lowest cost arc that satisfies the safety constraints, the vehicle is
able to smoothly avoid obstacles or other dangerous terrain conditions and then re-acquire
its path. The system checks speed choices from fastest to slowest, which results in a graceful
slowdown as the vehicle approaches an obstacle.

This approach works well if a local terrain map is available that includes the height of the
supporting surface. For smooth terrain with solid obstacles, this is straightforward because
accurate predictions of the load-bearing surface can be found by simply averaging the height
of the range points in the terrain map. However, this performs poorly in vegetation since
many laser range points hit various places on the vegetation instead of the ground, as shown
in Figure Using the lowest point in each grid cell correctly ignores the scattered range
points that hit vegetation, but in many cases the lowest laser point does not penetrate
denser vegetation, as shown in Figure Also, using the lowest point will cause the
system to ignore positive obstacles that rise above the ground surface such as a person.
Clearly, a more advanced criteria than simply using the average or lowest height in a cell is

6 Chapter 1. Introduction

Figure 1.5: Side view of penetrable vegetation data, with approximate ground height. There
are range points on the ground and the vegetation.

Figure 1.6: Side view of data showing transition from low grass on the left to tall dense
non-penetrable vegetation on the right, with approximate ground height. In the tall dense
vegetation, there are only range points on the top of the vegetation and the ground remains
hidden.

needed to find a useful estimate of the ground plane in vegetation. However, it is difficult
to come up with such a rule, and tuning to a given environment can be time consuming
and challenging.

1.3 Problem Statement

Current approaches to local rough-terrain navigation are limited by their ability to build
a terrain model from sensor data. Available sensors make very indirect measurements of
quantities of interest such as the supporting ground surface and the location of obstacles.
This is especially true in domains where vegetation may hide the ground surface or partially
obscure obstacles.

This thesis investigates methods of building a local terrain map from sensor data that
includes the height of the supporting ground surface and the location of obstacles. A

1.4. Previous Work 7

successful system should adapt easily to new conditions, handle incomplete and ambiguous
data, find obstacles in vegetation, make predictions of the ground surface even in dense
vegetation, and it should run on a real autonomous platform.

1.4 Previous Work

This section summarizes the most relevant work in this problem domain. Chapter [2] presents
a more detailed survey of related work in rough-terrain navigation.

As described in section local autonomous navigation in outdoor environments is
often performed in a model predictive control framework that searches over dynamically
feasible control arcs for a safe trajectory [Kelly and Stentz, 1998b|. In this framework, a
terrain model with obstacles and the supporting surface is used in combination with a model
of the vehicle to find a dynamic trajectory that avoids obstacles while protecting against
roll-over, body collisions, high-centering, and other safety conditions. While faithful models
of vehicle dynamics are often available, acquiring an accurate terrain model that includes a
description of the load-bearing surface and any obstacles in the local environment remains
a considerable challenge.

Early work in terrain perception operated in environments with smooth terrain and
discrete obstacles [Daily et al., 1988] [Kelly and Stentz, 1998b] and achieved good results
in these domains by looking at the height of the sensor readings from individual grid cells.
However, as described in section the presence of vegetation makes the problem much
more difficult because the range points from forward looking sensors such as stereo cam-
eras or a laser range-finder do not generally give the load-bearing surface. Classification of
vegetation [Davis et al., 1995] (also common in the remote sensing community - see refer-
ences in [Hebert et al., 2002]) is not sufficient for this task because a grassy area on a steep
slope may be dangerous to drive on whereas the same grass on a flat area could be easily
traversable.

A number of researchers have investigated methods that use range data to discriminate
sparse vegetation (as shown in Figure from solid substances such as the ground or
obstacles. These techniques exploit the fact that range measurements often penetrate sparse
vegetation, but do not penetrate solid obstacles. The properties used for discrimination fall
into two categories: shape and density.

Shape methods begin with a 3D cloud of range points and look at local features of
the data points to discriminate between the random spread of points in sparse vegetation
and the organized structure of points on solid objects. Researchers have modeled the
statistics of laser penetration in grass to find solid objects [Macedo et al., 2000], and they
have compared measurements across time and space to filter out areas where the penetration
is continually changing [Castano and Matthies, 2003]. A comparison between techniques
that look for the range shadow of solid obstacles and techniques based on local point
statistics is given in [Hebert et al., 2002]. The idea of computing local statistics about the
spread of points was expanded in [Vandapel et al., 2004] to discriminate between sparse
vegetation, solid surfaces, linear structures such as branches, and even concertina wire
[Vandapel and Hebert, 2004].

Density methods attempt to use range measurements to explicitly measure the den-
sity of objects in the environment. This has been done by dividing the world into small

8 Chapter 1. Introduction

volumes of space and then maintaining density scores (see Figure by keeping track
of ladar hits and pass-throughs [Lacaze et al., 2002] or ladar and radar measurements
[Ollis and Jochem, 2003].

The above methods have shown promising results in sparse vegetation, but they do not
address the problem of estimating the ground surface in dense vegetation where the ground
is completely hidden as in Figure One reason for this is that these methods make the
strong assumption of independence between terrain patches and make predictions locally
without including spatial context. This can make it difficult to disambiguate data from
tall vegetation and data from short vegetation, resulting in poor estimates of the hidden
ground height. We hope to address this by relaxing the independence assumption through
the inclusion of spatial correlations.

Also, the above methods often contain many rules that can be difficult to construct
and hard to tune to a given application. If the parameters are not tuned properly, the
system may produce incorrect predictions which could lead to poor vehicle behavior. Some
researchers have investigated using labeled training data to learn the parameters automat-
ically [Vandapel et al., 2004], but this approach requires large quantities of hand-labeled
training examples which is difficult and time-consuming. Omne way to improve on this
situation is by letting the system learn and adapt automatically using feedback from its
environment.

Researchers have investigated the use of parameter identification techniques with soil
models to estimate soil parameters on-line from sensor data [Tagnemma et al., 2002b], but
these methods only determine the terrain that the vehicle is currently traversing. We would
like to make predictions of the terrain in front of the vehicle so that the system can take
appropriate action before it reaches these areas.

Other researchers have presented algorithms for color classification that can adapt to
slowly changing conditions [Ollis and Stentz, 1997] [Ulrich and Nourbakhsh, 2000] or even
new terrain types [Batavia and Singh, 2001] by training online to the colors that the ve-
hicle is currently driving over. The key insight used in all of these methods is that
by measuring a quantity of interest in a different way, the system is able to automati-
cally collect training data and improve its predictions. For example, the indoor robot in
[Ulrich and Nourbakhsh, 2000] knows that the area it has just traversed is free of obstacles,
so it uses that stored data to train a simple color-based obstacle detector. The robot lawn
mower in [Batavia and Singh, 2001] assumes that if there is a large area in front of the robot
with an unknown color but low height, that area is passable so its colors are added to the
training data for a simple color-based obstacle detector. We would like to generalize these
adaptive ideas to a greater range of sensor data and apply the approach to the problem of
building a terrain model consisting of ground height estimates in vegetation instead of just
adapting our color distributions.

In summary, current approaches cannot handle difficult environments that include dense
vegetation, which is required for many important applications. Also, current approaches
generally have many hand-tuned parameters, which makes them difficult to use or apply to
a new application.

1.5. Thesis Statement 9

1.5 Thesis Statement

This thesis shows that the mapping from sensor data to a terrain model can be automatically
learned, even in difficult terrain that includes dense vegetation. Additionally, it argues that
including spatial correlations can improve the learned terrain model.

1.6 Overview of Approach

This thesis presents two related approaches for automatically learning how to create a
terrain model from sensor data. The first approach uses an online learning method that
directly learns the mapping between sensor data and ground height through experience
with the world. The system can be trained by simply driving through representative areas.
The second approach includes a terrain model that encodes structure in the world such as
ground smoothness, class continuity, and similarity in vegetation height. This structure
helps constrain the problem to better handle dense vegetation.

1.6.1 Learning a Terrain Model

Vehicle navigation systems that interpret range and appearance data are complex and have
many parameters that need to be optimized for good performance. It is difficult and time-
consuming to manually tune these parameters, so the idea of a learning system that can
easily optimize its own parameters is very appealing. The first part of this thesis investigates
how this can be done on an autonomous vehicle operating in rough-terrain.

A critical component of learning any task is receiving appropriate feedback. The type
of feedback separates the learning problem into several categories, described in the ma-
chine learning community as unsupervised learning, reinforcement learning, and supervised
learning. In an unsupervised learning task, the system receives no feedback about desired
outputs, so it can only model or cluster the input data. In reinforcement learning, the
system is occasionally provided with feedback about how well it is doing, in the form of
a reinforcement signal consisting of a reward or punishment, but the system receives no
feedback on its outputs so it must determine the connection from input data all the way to
the actions that will maximize its reward. In supervised learning, the system is provided
with continual feedback in the form of labeled training examples that describe the desired
output for a given input. This reduces the learning problem to a function approximation
or classification task.

For an autonomous vehicle operating in rough terrain, unsupervised learning is of limited
use since the system needs to respond appropriately to different types of terrain, which it
can only do if it receives some kind of feedback.

The reinforcement learning problem in this domain may involve letting the vehicle drive
around, and then giving it a reward when it reaches a goal and punishing it when it does
(or is about to do) something unsafe. This is a very challenging problem, especially when
the vehicle is large, expensive, and dangerous, and it will not be considered in this thesis.

Supervised learning is a more tractable problem, but to work well it generally needs
large amounts of training data. Acquiring this training data can be expensive and time-
consuming, especially if a human is needed to label each training example with the correct
output. In this thesis, we use a different approach, and set the problem up in a way that lets

10 Chapter 1. Introduction

Time T Time T+N

~
~
~
~
~
~
~
~
~
~
~

Figure 1.7: Learning a terrain model. At time T, features from forward looking sensors are
used to predict the ground height in front of the vehicle. Then, at time T + N the vehicle
drives over that area and finds its true height. The system uses this feedback to learn better
predictions.

the system acquire labeled training data automatically with minimal human intervention
by letting the system receive feedback directly from the environment.

Section [[.2] argued that an accurate local terrain map of the area in front of the vehicle
that includes the heights of the supporting ground surface and the location of obstacles
would allow successful autonomous navigation. Autonomous vehicles can sense the ground
surface in two different ways. First, the system can use forward looking sensors, such as
cameras and laser range-finders, which make indirect measurements of the ground, especially
if the ground is hidden under vegetation. Second, the vehicle can accurately sense where
the ground is underneath its wheels when it drives over an area.

As shown in Figure the mapping from forward looking sensors to future vehicle
state, which would allow autonomous navigation, can be automatically learned by using
the vehicle’s experience when it interacts with the terrain. The vehicle uses forward look-
ing sensor data to make predictions of the supporting surface in front of the vehicle, and it
stores the sensor data used to make these predictions. Later, when the vehicle drives over
that area, it finds the true supporting ground surface under its wheels, and it correlates that
desired output with the input sensor data it previously stored for that location. By driving
over representative terrain, the vehicle can easily collect massive amounts of labeled training
data, which can be used to learn how to construct an accurate terrain map from forward
sensor data. This allows the system to train itself to a domain with minimal human over-
sight. Also, by continuing this learning process while the system is running autonomously,
the system can adapt to slowly changing conditions with no human intervention at all.

1.6.2 Using Structure to Constrain Problem

A limitation of the approach presented in the previous section is that predictions are made
independently in each small patch of terrain, without including any spatial context. This
can cause problems when there is ambiguous feature data. Figure [I.§ shows an example
where the range points from a small patch of tall vegetation and a small patch of short
grass appear the same. If the system considers each of these patches independently, it will
give the same ground estimate for both and get at least one of them wrong. When humans
look at the data, it is clear from the context that these are different cases. In the second

1.6. Overview of Approach 11

.
S e o, o o .."..--o v ey
L - R o e * e om el e mns b e mum osln

Figure 1.8: Using context, the side view of laser points on the left appears to be a transition
from short grass to tall constant height vegetation, and the laser points on the right appear
to be short grass on flat ground. These two situations can be ambiguous when looking at
the laser points from a single patch without spatial context.

part of this thesis, we relax the strong assumption of independence between terrain patches
through the inclusion of spatial correlations. We present a terrain model that can use
spatial context to disambiguate similar data features and find the ground height in dense
non-penetrable vegetation.

Outdoor environments such as those encountered in agriculture, mining, and the ex-
ploration of hazardous environments are often viewed as being “unstructured”. However,
such environments do possess a great deal of structure that humans frequently exploit in
the performance of tasks we wish to automate. For example, consider a vehicle navigating
through a field of vegetation or crop. We can use the knowledge that the ground is generally
smooth and the vegetation has approximately constant height to infer the ground height
and allow navigation even through areas where the ground is not directly observed.

We present a generative, probabilistic approach to modeling terrain that includes three
spatial assumptions to help constrain the problem: smooth ground height, class continuity,
and similar vegetation height. The structure in the terrain model is combined with infor-
mation from multiple sensors on the vehicle using sensor models that are automatically
learned from training data by driving over representative terrain, as in the first approach
described in the previous section. We treat obstacles as having uncertain appearance so
that we do not need to train explicitly on obstacles. We rely on accurately modeling the
known classes and detect obstacles when no other class in the model is consistent.

Joint inference of ground height, class height and class identity over the whole model
can result in more accurate estimation of each quantity. Inferring the vegetation height
gives an improved estimate of the height of the underlying ground. Knowing the ground
height helps disambiguate solid obstacles standing on top of the ground from the solid
ground surface. As an example of these ideas, Figure shows a challenging scene with a
person wearing a camouflage jacket standing in tall dense vegetation and Figure [1.10| gives
the terrain model estimate that was inferred from the color and infrared tagged range data
using our model structure with trained parameters. Figure shows the inferred ground
surface, an obstacle where the person is standing, and classification results for the dirt

12 Chapter 1. Introduction

E
%

z
=
=

any
T
““%!.‘..

i
1)
o
§
1

Y

.‘ T

14
il
.
3
b

3y
LY
W
¥
e
i
Ty

Figure 1.9: View from tractor of per- Figure 1.10: Model estimate showing ob-
son, tall weeds, low grass, and small dirt stacle location, ground heights, and ter-
mound rain classifications (from light to dark:

dirt, tall weeds, low grass)

mound, the tall yellow weeds, and the low grass. The system leverages spatial structure in
the environment to find the person, make accurate ground height predictions even though
the ground is hidden under dense vegetation, and produce classification results that are
generally correct (except for the large patch of dirt in front of the dirt mound, but that
area of the ground is hidden behind the tall weeds in front of the tractor). This example is
discussed in more detail in section [6.8.4] and we present results in chapter [7] that show that
including spatial correlations produces improved ground height estimates in vegetation.

1.7 Organization

The remainder of this thesis describes the above approaches in more detail and presents
results from realistic test settings in challenging areas that include various obstacles, haz-
ards, and vegetation. Chapter [2] describes related work in rough-terrain navigation in more
detail. Chapter [3] gives the general online learning approach, and chapter] shows how this
approach can be applied to the problem of learning a terrain model in vegetation. Chap-
ter [also includes results and discusses the limitations of this approach. Chapter [f] gives
background information on various forms of probabilistic Markov models, which are then
used in chapter [6] to incorporate structure into the terrain model. Chapter[6]includes results
using this terrain model in vegetation, and chapter [7] gives a comparison between the two
approaches. Chapter [8] presents conclusions and areas for future work. System details are
given in Appendix [A]

Chapter 2

Related Work in Rough-Terrain
Navigation

A summary of closely related work was given in section as motivation for the approaches
presented in this thesis. This chapter gives a more general survey of related work in rough-
terrain navigation.

Rough-terrain navigation generally falls into two different types of problems: global
planning and local navigation. The global planning problem requires the vehicle to navigate
to a goal destination in an unknown or partially known environment. This scenario is
common in exploration problems and requires higher level planning to find a path that
satisfies safety constraints and is globally optimal, or at least feasible. Because of the high
dimensionality of the rough terrain planning problem, researchers generally use a high level
algorithm to find promising paths or subgoals quickly, and then more accurate models are
used to evaluate and perhaps modify the local trajectories to find a feasible path. Although
we are not investigating the global planning problem in this work, much of the prior work
in rough terrain navigation approached the problem from a planning perspective, and their
techniques for the evaluation of local paths are directly applicable to our proposed work.

The second type of problem involves local navigation. In this case, a vehicle may have
a fixed path that it is attempting to follow, or a direction that it is trying to move towards.
This occurs in many agricultural settings where the path is predetermined by the crop
and the vehicle has very limited maneuverability to deviate from the path. In this case,
the safety problem becomes one of determining controls that keep the vehicle close to the
path and within certain safety limits. Other domains are less constrained, and so various
methods of arbitrating between different objectives are used. As in the planning problem,
various methods are used to evaluate potential control actions for safety and performance.

The following sections describe prior work in areas relevant to rough terrain navigation,
including global planning, local navigation, agriculture, and automatically learning terrain
parameters.

2.1 Global Planning

Although the focus of this thesis is on local navigation using real data, much of the prior
work in rough-terrain navigation has been in the context of planning. The following research

14 Chapter 2. Related Work in Rough-Terrain Navigation

was done in simulation, but includes a number of safety constraints based on the vehicle or
terrain.

[Shiller and Gwo, 1991] uses a fast global planner to find a number of candidate paths
through a hilly terrain that includes discrete obstacles and low-traction areas. A simple
dynamic model is then used to find the velocity limit curve along the path that satisfies
constraints on engine torque, sliding, contact, and tip-over, and the path with the shortest
overall time is chosen. This technique was then extended [Shiller, 2000] to allow traversal
over small obstacles by using a more general traversability metric instead of binary obstacles.
Simulation results are given and complete terrain knowledge is assumed.

[Cherif and Laugier, 1995 [Cherif, 1999a] [Cherif, 1999b] also use a high level planner to
find subgoals, and then uses complex models of deformable terrain, robot dynamics, and the
wheel /ground interaction to find a feasible trajectory between the subgoals. Constraints on
collision, contact, tip-over, sliding, torque, and dynamic feasibility are included, but perfect
knowledge of the terrain and robot are assumed and the planner is slow. Results are given
in simulation for a six-wheeled rover traversing areas that include static obstacles, slippery
areas, and hilly terrain.

[Chanclou and Luciani, 1996a] [Chanclou and Luciani, 1996b] use a potential field based
global planner along with complex models of the vehicle and terrain for local planning. The
models are based on point masses and connections, and can simulate complex interactions
between the vehicle and the soil, including wheel slip and soil deformation. Simulation
results are given showing realistic wheel-soil interactions, but perfect knowledge is assumed
and the simulation is slow.

[Amar et al., 1993] [Amar and Bidaud, 1995b] [Amar and Bidaud, 1995a] use a very sim-
ple planning scheme based on adjusting the parameters of a cubic spline path between known
subgoals to minimize a cost function on the path. A kinematic model is constructed to
evaluate the paths. The model includes wheel-soil interactions and constraints on stability,
slipping, torque, and joint-angle. Simulation results are given.

2.2 Local Rough-Terrain Navigation

The following sections describe efforts by different groups at creating vehicles that can
successfully navigate in rough terrain. Research is organized in roughly chronological order
within each group.

2.2.1 Hughes

A team from Hughes Artificial Intelligence Center reported the first autonomous operation
of a robotic vehicle in natural terrain in the late 80’s [Daily et al., 1988]. Although the
vehicle’s speed was limited by the computational resources available at the time, their
vehicle was able to successfully navigate on natural terrain, and their basic approach is
very similar to the methods being used today. A hierarchical control system is used to
combine a map based planner with low-level behaviors. One of the behaviors is responsible
for evaluating safe trajectories. The points from a 3D laser range finder are inserted into
an elevation grid map. A vehicle model is placed onto the elevation map at points along
the trajectory, and tests are performed for high slope, clearance, and suspension limits to
determine if that trajectory is safe.

2.2. Local Rough-Terrain Navigation 15

2.2.2 CMU

Carnegie Mellon University has a long history of rough-terrain navigation research. The
FastNav system [Singh and Keller, 1991] could perform high speed obstacle detection on
simple terrain. It fits a function to range points to determine the terrain surface, and then
looks for vertical deviations from that surface. The path is known, so only the area around
the future path is evaluated, and computational tricks are used to make the system run fast.
Using this system, the NavLab vehicle was able to drive at 14 km/hr (9 mph) on rolling
terrain with discrete obstacles. This system has since been applied using a radar sensor to
a large Caterpillar mining truck that travels up to 40 km/hour (25 mph) on dirt roads.

Early experiments by [Langer et al., 1994] involve discretizing the world and computing
a binary traversability measure by testing the laser points in each cell for large height
variation, high slope, or a vertical discontinuity. This traversability measure is computed
recursively by the SMARTY point-based range processing system as each range point and
uncertainty is inserted into the cell [Hebert, 1997]. Using the Distributed Architecture
for Mobile Computing [Rosenblatt, 1997], different behaviors (avoid obstacle, seek goal,
etc) then vote for steering directions, and a linear combination of votes produces the next
steering direction. The system was able to drive the NAVLAB II HMMWYV at 7 km/hr (4
mph) over gentle terrain that also included rocks, hills, and ditches. The incremental global
path planner D* [Stentz, 1994] was incorporated into the system [Stentz and Hebert, 1995],
allowing the vehicle to perform an autonomous 1.4 km traverse in an open area with sparse
obstacles.

Instead of classifying the terrain as obstacles or free, [Brummit et al., 1992] maps points
from a laser scanner into a grid and then finds local plans using a “guess and check” process
that simulates a vehicle model on the terrain and checks for body collisions and static stabil-
ity. This system was able to drive the NAVLAB IT HMMWYV at an average speed of 7 km /hr
(4 mph) over 4.5 km of gently rolling terrain with sparse obstacles. [Kelly and Stentz, 1998a]
[Kelly and Stentz, 1998b] formalizes this idea in terms of predictive control and evaluates a
set of dynamically feasible trajectories for hazards including tip-over, body collision, height
discontinuity, and unknown terrain. Votes for different control actions are combined by
selecting the steering command that best achieves the goal (path following, goal seeking
etc) while staying within safety constraints. Through intelligent use of perception data and
by accounting for processing delays, the RANGER system was able to control the NAVLAB
IT HMMWYV on excursions of 15 km at speeds up to 15 km/hr (9 mph).

The RANGER system has been quite successful for large vehicles like the HMMWYV,
but smaller rovers have had difficulty using it in practice because small errors in the eleva-
tion map translate to predictions of large tilting hazards or body collisions for a small
rover. [R. Simmons and Whelan, 1996] modified Kelly’s RANGER algorithm to better
work for small rovers by using traversability maps instead of terrain height maps. Planes
are fit to terrain range points and a traversability measure is computed from the plane
roll/pitch, variation from the plane, and a confidence measure based on the number of
points used. Control uncertainty is handled by averaging over a Gaussian distribution of
steering angles. The resulting MORPHIN system (a “power” RANGER) was implemented
on a rover and performed a lkm traverse 90% autonomously. Merging of traversabil-
ity maps and the addition of Stentz’s D* algorithm for global planning is described by
[Singh et al., 2000]. The MORPHIN system was also used on the CMU Hyperion rover

16 Chapter 2. Related Work in Rough-Terrain Navigation

during tests of sun-synchronous navigation [Urmson et al., 2002] and was modified for the
2003 Mars rovers [Goldberg et al., 2002].

More recently, the RANGER system has been combined with Stentz’s D* planning al-
gorithm for the PerceptOR project. This system uses a small helicopter that flies in front of
the vehicle to provide more sensor information [Stentz et al., 2002b]. The vehicle performs
a vegetation penetrability analysis similar to [Lacaze et al., 2002], and has been tested ex-
tensively in realistic cluttered rough-terrain environments at speeds of 3 km/hour (2 mph).
However, this system required significant manual tuning to work in a given environment.
More recent work has included an application of the learning approach given in chapter
of this thesis to automatically learn the ground height in vegetation [Kelly, 2004].

[Urmson, 2004] described methods for high-speed navigation on the Sandstorm vehicle
by incorporating prior map data and swerving around obstacles instead of stopping for
them.

Early work in vegetation focused on classification of vegetation and solid substances
[Davis et al., 1995]. Vegetation classification and removal using local statistics of range
data points has been investigated in [Hebert et al., 2002]. This work was then extended
by [Vandapel et al., 2004] to discriminate between sparse vegetation, solid surfaces, linear
structures such as branches, and even concertina wire [Vandapel and Hebert, 2004].

Dima and Wellington have worked on applying machine learning techniques to vari-
ous portions of the rough-terrain navigation problem within the context of an agricultural
application. [Dima et al., 2004b] shows the benefit of fusing multiple classifiers that use
different sensing modalities such as color, texture, and ladar to detect obstacles in outdoor
environments. Training these classifiers requires large amounts of labeled training data.
[Dima et al., 2004a] looked at active learning methods to automatically select a subset of
“interesting” images from long data collection runs to achieve good classification results
with small amounts of labeling.

The two learning approaches in this thesis are based on earlier publications. The on-
line learning approach using independent cells described in chapters [3] and [] is based on
[Wellington and Stentz, 2003] and [Wellington and Stentz, 2004]. The approach that in-
cludes spatial correlations described in chapter @ is based on [Wellington et al., 2005].

2.2.3 JPL

Various groups at the NASA Jet Propulsion Laboratory have worked on rough-terrain
navigation for mars rovers as well as terrestrial vehicles. One group uses reactionary
fuzzy control for off-road navigation. Seraji [Seraji et al., 2001] [Seraji and Bon, 2002]
[Seraji and Howard, 2002] extracts measures of roughness, slope, and discontinuity from
stereo images to determine the traversability for three regions in front of the rover. Simple
reactionary fuzzy rules are then used to navigate around obstacles and toward a goal. Fuzzy
rules are also used for rover safety. [Tunstel et al., 2001] classifies the upcoming terrain from
camera images into three traction classes using a neural network, and then applies fuzzy
heuristics to determine the safe speed for the rover based on traction and attitude. Results
with a Pioneer robot in natural terrains show successful navigation around obstacles and
speed reduction based on changes in traction and attitude.

Early rover technology for Mars mainly involved the slow, tedious process of teleop-
eration, but current and future rover missions have increased autonomy for higher science

2.2. Local Rough-Terrain Navigation 17

return. |Goldberg et al., 2002] describes GESTALT, which is a port of the CMU MORPHIN
software to their Mars rover.

JPL has also performed research for terrestrial off-road navigation. Early work included
implementing the RANGER system on a HMMWYV [Matthies et al., 1995] using stereo and
infrared classification of vegetation. It was able to travel at 5-10 km/hour in smooth terrain
with some low vegetation.

The JPL vision group has proposed many perception systems for classifying terrain from
forward looking sensors [Bellutta et al., 2000] [Manduchi et al., 2001] [Talukder et al., 2002b]
[Manduchi et al., 2005]. Matthies has also proposed specialized techniques for finding water
[Matthies et al., 2003a] and negative obstacle [Matthies and Rankin, 2003] hazards.

Using a simple 1D dynamic vehicle model and spring-based models of different classes
of terrain, [Talukder et al., 2002a] finds the maximum speed the vehicle can travel without
exceeding a vertical acceleration limit. This technique allows the vehicle to drive over a
small bush or clump of grass, but avoid a similar sized rock. Talukder also mentions the
possibility of learning the spring models online.

[Macedo et al., 2000] finds hard obstacles hidden in grass by assuming a statistical dis-
tribution of grass and looking for areas that do not follow that distribution. This analysis
was taken further in [Matthies et al., 2003b] by carefully studying how far ladar sensors
penetrate various types of vegetation, and including preliminary results using radar.

[Castano and Matthies, 2003] uses a set of time and space locality constraints to filter
out sparse vegetation and detect solid obstacles. This system allowed a small robot to
navigate through vegetation and avoid a person.

2.2.4 NIST

[Lacaze et al., 1998] described a method of precomputing a number of dynamic trajectories
which are then checked against obstacles at run time. The implementation of this system is
given in [Coombs et al., 2000]. The system checks the range points from a 3D laser scanner
for height discontinuities to create a simple binary obstacle representation in a local grid
map. A large set of dynamically feasible trajectories are then tested for intersections with
these obstacle cells, and a path is chosen that maintains a speed-dependent safety clearance
around the vehicle. For simple rolling terrain with discrete obstacles, their vehicle was able
to travel at speeds of 35 km/hr (22 mph).

These ideas have been extended to better handle difficult terrain through the military
Demo III program [Lacaze et al., 2002]. The system uses the 4D/RCS reference model
control architecture [Albus, 2000] to plan at different time and space resolutions. To handle
vegetation, the volume in front of the vehicle is broken up into 3D voxels, which each record
the number of laser hits in that cell and the number of times a laser passes through that
cell. The ground surface is then found as the boundary between cells that have mostly
hits and cells that have mostly pass-throughs. They report that errors rarely exceed 0.25m
in tall grass. Planning is performed as a graph search over clothoid arcs that have costs
based on path length, side accelerations, density of vegetation, vehicle roll/pitch, roughness,
body-collision, and unknown cells. Their system has been demonstrated in difficult realistic
conditions with sparse vegetation.

18 Chapter 2. Related Work in Rough-Terrain Navigation

2.2.5 GDRS

General Dynamics Robotics Systems have built several automated vehicle platforms for
military applications such as the XUV [Glo, 2005]. This platform has been used for many
demonstrations using software jointly developed by NIST [Lacaze et al., 2002] and more
recently CMU [Vandapel et al., 2004]. Although there are few publications on this platform
or the work done at GDRS, their systems are very capable and have been successfully
tested in many realistic tests in challenging terrain with over 400 km logged in combined
autonomous and teleoperation tasks [Glo, 2005].

2.2.6 LAAS

The LAAS group has done work in rough-terrain planning. [Simeon and Dacre-Wright, 1993]
created a planner that expands a tree of feasible trajectories that satisfy constraints for con-
tact, suspension limits, tip-over, and body collision by statically placing the robot on the
terrain. As part of the EDEN experiments at LAAS, this planner was implemented on the
ADAM rover in a system that switched between different planning modes depending on the
difficulty of the terrain [Lacroix et al., 1994].

[Nashashibi et al., 1994] describes the construction of terrain maps using points from a
3D LADAR and their associated uncertainty. These maps were then used for localization
and as an input to the planning system, allowing ADAM to slowly traverse a 50m section of
rugged terrain. This planning method was later extended by Hait to explicitly handle sensor
and control uncertainty [Hait and Simeon, 1996] and landmark visibility for localization
[Hait et al., 1999], but only simulation results are given for these extensions.

2.2.,7 MIT

Researchers at the MIT Field and Space Laboratory have investigated rough-terrain plan-
ning for space rovers and various ways to estimate important terrain parameters online.
[Farritor et al., 1998] employs genetic algorithms to search through a list of discrete rover
actions, using a cost function that includes constraints on power consumption, actuator sat-
uration, wheel slip, and vehicle stability. [lagnemma et al., 1999] instead uses A* to quickly
find candidate paths through the terrain. A similar kinematic analysis is used to evaluate
the paths, but simple notions of sensor and control uncertainty are included. Simulation
results show the importance of the kinematics evaluation.

In more recent work, Iagnemma notes the importance of wheel-terrain interaction on
rough-terrain mobility and describes an on-line approach to estimate terrain parameters
[[agnemma et al., 2002b] and wheel-terrain contact angles [lagnemma et al., 2001]. He also
mentions the possibility of associating visual terrain classification with terrain parameter
estimation for improved control and planning [[agnemma and Dubowsky, 2002]. Labora-
tory experiments using a smooth wheel in sand verify his approach. lagnemma is also
investigating [lagnemma et al., 2002a] the use of complex dynamic models for high speed
rough-terrain navigation.

2.3. Agriculture 19

2.3 Agriculture

A number of researchers have specifically looked at agricultural applications. Many agricul-
tural settings include significant structure such as crop rows that can be used for guidance.
[Reid and Searcy, 1987] presented an early vision algorithm that could segment cotton rows
and determine heading and offset errors. [Billingsley and Schoenfisch, 1995] demonstrated a
similar approach to track straight rows of cotton at up to 25 km/hour. [Gerrish et al., 1997]
reported visual guidance in straight row crops at 13 km/hour. [Southall et al., 1999] used
known planting geometry to detect individual plants for guidance.

Instead of using local visual features, researchers have developed automatic tractor
steering systems using only differential GPS |O’Conner et al., 1996]. [Zhang et al., 1999
developed a system that fused vision-based crop row detection with GPS to provide more
robust vehicle guidance.

[Ollis and Stentz, 1997] at CMU built an adaptive classifier to track the cut/uncut line
in an alfalfa field for the vision-based guidance of a harvester. This system was able to
autonomously harvest hundreds of acres of crop in various fields and lighting conditions
[Pilarski et al., 2002]. It also included vision-based techniques for end-of-row detection and
simple color-based obstacle detection.

Our early work included a demonstration of GPS-based guidance of a tractor in an
orange grove with simple obstacle detection [Stentz et al., 2002a]. Using a pre-taught path,
it drove autonomously for 7km at speeds ranging from 5-8 km/hour while pulling a sprayer.

Many researchers have investigated the automatic guidance of farm equipment (see
[Reid et al., 2000] for a summary), and this technology has matured to the point where
several products are available for automatic steering along straight rows using GPS when
an operator is present in the cab. However, very little vehicle safeguarding work has been
done in the agricultural domain, which is required for full automation.

2.4 Learning Terrain Parameters

2.4.1 Soil Parameters

[Le et al., 1997], [lagnemma et al., 2002b] and [Yoshida and Hamano, 2002] use soil models
to estimate soil parameters online from sensor data. These methods use wheel slip to
determine the traction of the terrain that the vehicle is currently traveling over.

While detecting the current soil parameters is useful, it may not be enough for an
autonomous vehicle. The system needs to be able to predict the response to the upcoming
terrain to be able to make the correct decision now. For terrain that is uniform or slowly
and continuously changing, these methods may work well, but for terrain that has abrupt
changes, such as driving off of a gravel road onto muddy soil, these methods may react too
late.

2.4.2 Color Classification

A number of researchers have used online adaptation to better handle changes in lighting
for color-based obstacle detection.

20 Chapter 2. Related Work in Rough-Terrain Navigation

[Ollis and Stentz, 1997] computes a linear separator to classify cut and uncut crop from
color images. The pixels in the current image from each class are used to train the classifier
for the next image, which results in adaptive behavior similar to an online EM algorithm.
This algorithm was successful at tracking slow changes in lighting and crop variation.

[Ulrich and Nourbakhsh, 2000] stores a histogram of the colors for the area the robot
recently drove over and then classifies anything that doesn’t match that histogram as ob-
stacles. This allows the system to adapt to slowly changing conditions.

[Batavia and Singh, 2001] similarly stores a histogram of the colors in front of the robot,
but adds a height threshold to check if an unknown color is truly an obstacle. If there is
a large area in front of the robot that is an unfamiliar color but has low height, then that
area is assumed to be passable and those colors are added to the training data.

These approaches have demonstrated the benefits of adapting online, and our work in
chapters [3] and [builds on these ideas.

2.5 Summary

Current approaches to rough-terrain navigation work well in smooth terrain with discrete
obstacles, and have shown promise in more cluttered environments that include vegetation,
but they are generally not adaptable and don’t handle dense non-penetrable vegetation.

Chapter 3

Online Learning

To overcome the difficulties associated with creating terrain models for a complex envi-
ronment that may be unknown or changing, we close the loop around vehicle predictions
as shown in Figure by making predictions from sensor data and then observing actual
behavior when the vehicle drives over that area. This feedback is used for continual learning
and adaptation to current conditions.

This chapter describes the basic online learning approach, how it fits into vehicle control,
the assumptions it makes, and finally discusses some challenges to learning online. Chapter[4]
describes the application of this general approach to the problem of finding the supporting
ground surface in vegetation.

3.1 Approach

There are a number of terrain characteristics that can be sensed by an autonomous vehicle
in multiple ways. For example, the ground surface height can be measured using forward
looking range sensors as well as by using the known wheel locations when the vehicle
drives over that area. The friction coefficients of the soil could perhaps be inferred from
color and infrared camera data and can also be measured by monitoring wheel slip as the
vehicle drives over that area. In both of these cases, we would like to be able to make
predictions of these parameters for areas ahead of the vehicle, but we expect much higher
quality measurements of the parameters under the vehicle. As shown in Figure we can
correlate the indirect measurements ahead of the vehicle, which we call terrain features,
with the direct measurements of terrain parameters found when the vehicle drives over
that area. This data forms input-output pairs between terrain features (e.g. range data
points) and terrain parameters (e.g. ground height) that can be used to learn this mapping
automatically.

To make this concrete, let us interpret Figure for the problem of finding the ground
height in vegetation. The system makes predictions of the location of the ground height
terrain parameters from terrain features extracted from data from forward looking sensors
like ladar or cameras. Whenever the system extracts features for predictions, it stores these
features in that cell. Features may change depending on how far away the sensors are, so this
process is repeated at different distances to build up a set of feature sets for the cell. Then
the vehicle drives over the terrain and measures the true surface height with its rear wheels.

22 Chapter 3. Online Learning

Time T Time T+N

~
~
~~
~
~
~
~
~
~
~
~
Cellm

Features for d=10
Features for d=9
Distance d Features for d=8

U Features for d=1

Figure 3.1: Learning terrain height predictions. At time T, features from map cell m at
distance d are used to make a prediction and then stored. As the vehicle gets closer to the
cell, feature sets for the cell computed at those distances are stored. Then, at time T + N
the vehicle traverses the cell and finds its true height. The learner is trained with the set
of feature sets computed at different distances and the true height found from the wheel.

All the stored feature sets are correlated with the true height and these input-output pairs
are used as training examples to an online learning algorithm (see section that learns
the mapping from terrain features to the ground surface height terrain parameter. This
process happens continuously, so the more the vehicle interacts with the environment, the
more training data the learning system receives.

Features for obstacles such as buildings and other vehicles cannot be found by driving
over them, so they need to be entered manually. For these untraversable areas, feature sets
are stored for different distances just like other areas, but we must manually select them in
our user interface to assign a truth value such as the highest laser point for learning (see

section [4.1]).

3.2 Adaptive Control

This section describes how the online learning approach fits into the vehicle navigation
system. We cast the local navigation problem in the optimal control formalism of adap-
tive model predictive control [Sanchéz and Rodellar, 1996]. Instead of reactionary control
techniques such as PID control, optimal control seeks to find the set of controls that will
optimize some cost function. Model predictive control uses a model to predict what will
happen after the application of certain controls. These predictions are then used to find
the control that is optimal according to some cost function (as described in section .
Adaptive model predictive control works the same way, but it also uses the experience

3.2. Adaptive Control 23

Sensors —
Terrain Vehicle
Terrain Features True

+ Params

Learning 4—’ Vehicle
| Terrain

Terrain Parameters Pose

+ System

Dynamic Model €¢————

Predictions

v

Control ————— Actions ———P»|

Figure 3.2: Block diagram of proposed approach

from interacting with the world to change its model to make more accurate predictions and
therefore produce better control actions.

Figure [3.2] gives a block diagram of the approach. Sensor information about the terrain
is transformed into a set of features such as the average height of the laser points or the
color of the terrain. These features are presented to an online function approximator that
produces estimates of important terrain parameters such as ground height or the friction
coefficient. A dynamic model uses this information to make predictions of future vehicle
motion, including safety variables such as roll, pitch, and clearance, for a set of possible
control actions. The controller then uses these predictions to find the best action that stays
within allowable safety constraints. When the vehicle drives over a section of terrain, it
measures the actual terrain parameters through its interaction with the terrain, and this
information is used to improve the function approximator so that it can better learn the
mapping between terrain features from the sensors and terrain parameters for the dynamic
model, resulting in more accurate predictions and better control.

This combination of kinematic/dynamic vehicle model equations with learning tech-
niques offers several advantages. Known kinematic relationships do not need to be learned,
so the learner can focus on the difficult unknown relationships. Also, the learned function
can be trained on flat safe areas, but is valid on steep dangerous areas. If we learned the
roll and pitch directly, we would need to provide training examples in dangerous areas to
get valid predictions there.

24 Chapter 3. Online Learning

3.3 Assumptions

The central idea of this approach is that learning a mapping from terrain features to impor-
tant model parameters such as ground height (or other parameters such as surface friction)
will allow more accurate vehicle predictions to be made. This brings up three key assump-
tions.

3.3.1 Accurate Local Position Estimation

It is important that the vehicle knows where it is in the world. For many applications,
differential GPS can be used to provide global position to centimeter accuracy. This in-
formation can be combined with other on-board sensors (see section to provide the
needed position accuracy. There are a number of other domains (underwater, underground,
under dense foliage, other planets) where GPS is not available. Many researchers are
actively pursuing solutions to the simultaneous localization and mapping (SLAM) prob-
lem [Majumder et al., 2003]. Hopefully work in this area will produce solutions able to
provide accurate position estimation in the absence of GPS. Other solutions are also avail-
able. For example, in the agricultural domain visual information from the crop rows has
been combined with on-board sensors to get a better position estimate [Zhang et al., 1999).
Finally, because this work involves the local navigation problem, good relative pose infor-
mation is enough. The pose estimate must be stable enough that the information from the
forward looking sensors can be correctly registered to the behavior of the vehicle when it
drives over that area, as shown in Figure 3.1

3.3.2 Terrain Feature Observability

This approach assumes that qualities of the terrain that will affect the vehicle are observable
by available sensors. However, some hazardous situations for a rough-terrain vehicle are
undetectable even by humans. A common example is an object or hole completely hidden by
uniform weeds, as shown in Figure For situations like this, algorithmic solutions won’t
help, and a better sensor such as vegetation-penetrating radar is needed. This approach can
take advantage of such a sensor if it is available, but explicit investigations into advanced
sensors are beyond the scope of this work.

3.3.3 Terrain Parameter Observability

The third assumption is that the vehicle will be able to measure the important model
parameters by interacting with the terrain. Ground height can be measured using the
wheels, and terrain friction can be measured from the wheel slip, but the actual “danger”
of a patch of terrain is not directly observable. This approach only considers quantities
that are measurable. Even for parameters that are observable such as ground height, we
may not be able to recover exactly the true surface. As shown in Figure the “truth”
values found from the wheel measurements are actually the convolution of the wheel with
the ground, so it cannot completely resolve holes or step hazards. This is not a problem in
most domains where the ground is relatively smooth.

Classification of obstacles is important for a better understanding of the terrain and
possible risks. For example, although a vehicle may react similarly to driving over a person

3.4. Challenges of Online learning 25

I

Figure 3.3: Undetectable rock hidden in vegetation

| —> ——

Figure 3.4: Partially unobservable true ground height due to wheel size

lying down and to driving over a similarly sized mattress, clearly the situations require
different actions in a fully automated vehicle. Obstacle classification is a very challenging
problem and many people are actively researching it. This approach can naturally accept
the outputs of an obstacle classification system as inputs as long as the classification labels
can be projected into the world frame. Also, the second approach in this thesis presented
in chapter [6] will explicitly include obstacle classification.

3.4 Challenges of Online learning

3.4.1 Affecting the Input Distribution

Learning systems generally make the assumption that the training data and the test data
are drawn from the same underlying distribution. One concern with any online learning
system is that its actions will affect the distribution of input data, and may shift the input
distribution to a part of the input space that has not been trained and perhaps cause the
system to perform poorly. For example, if a vision system is trained to follow a road by being
shown many examples of road images, it may do well when it is on the road, but if it makes
a small mistake, then the next input image will have less road in it and therefore be in a
part of the input space that is less well known by the system, again increasing the possibility
of a mistake. This problem was recognized in the ALVINN neural network driving system
[Pomerleau, 1995]. In that work, the problem was addressed by warping the input images
to simulate other viewing angles, and thus maintain training data over a larger portion of
the input space. They also attempted to maintain a database of representative training
examples over everything they’ve seen to prevent the neural network from overweighting
recent training data and forgetting earlier training data.

26 Chapter 3. Online Learning

We don’t have these problems because of how we set up the learning problem and our
choice of function approximator. Instead of directly learning a cost or driving direction,
this approach learns terrain parameters such as ground height that are used with a vehicle
model to determine safety. This means that the training data from vegetation in flat safe
areas is directly applicable to dangerous slopes that are covered in similar vegetation.

Untraversable areas that do not share common features with traversable areas (e.g
buildings, people) require time-consuming manual labeling, so we expect much more train-
ing data to be available for traversable areas than these “obstacle” regions. The learning
algorithm used in this work (see section produces confidence intervals on its output
which are based on how much data it has seen in that part of the input space and how
much of the output it cannot model. This means that the system knows when it is seeing
something new that the learning system does not understand. This idea will be carried
further in the second part of this thesis, where we explicitly model obstacles as anything
the system hasn’t seen before.

The imbalance in training data quantities between traversable areas and obstacle areas
could lead to concerns that the system will “forget” how to interpret obstacles. This is a
common problem with globally optimized functions such as neural networks. For example, if
we train a neural network to detect people and then train it on miles and miles of traversable
vegetation, it may lose its ability to detect people in its effort to describe vegetation. We
avoid this problem by using a local learning algorithm that only makes changes in a local
area in the input space. For the above example, the area of the input space that is active
from a person would not be changed while it is driving through vegetation. Of course,
this requires the various classes that we care about to be separable in the input space, as
described in section [3.3.21

3.4.2 Choosing Features

Feature choice is a difficult problem, and different researchers have proposed various fea-
tures. Section describes the features used in our application, which are a combination
of existing features that others have used along with some new features that take advan-
tage of the hit and pass-through density measures that are maintained by our system (see
section . Regardless of the choice of features, the model learning method should handle
irrelevant features and determine which features are the most important.

As described in section this approach requires different types of terrain to be
separated in the input space so that the learning system can produce different predictions
for each. This assumption is often not met by real data, which is generally noisy and sparse.
The second part of this thesis in chapter [6] will describe how introducing spatial correlations
can help deal with ambiguous and missing feature data.

Chapter 4

Learning a Terrain Model with
Independent Cells

This chapter describes an implementation of the general learning approach presented in
chapter [3] to the problem of building a terrain map in vegetation. This approach auto-
matically learns the mapping from features of the sensor data to ground height estimates.
Although the system does not directly output obstacle locations, it produces a “supporting
surface” estimate at the top of obstacles, so those areas are marked as clearance hazards
by the vehicle safety checks performed by the model predictive control system described in
section

Figure shows the steps from sensor data to ground height predictions (this is a
subset of the full system diagram given by Figure in chapter . Each of these steps
are described in detail in the following sections. Section shows how the system acquires
labeled training data for learning, section describes the features used, and section
gives the details of the function approximator we use for learning. Results are given in
section and a summary and limitations of the approach are given in section

Feature Learnin -
Sensor Data —>| Features s , Ground Height
Extraction Predictions

Figure 4.1: Steps of learning approach

4.1 Training

Chapter [3| described an online learning approach that allows an autonomous vehicle to
collect labeled training data for traversable areas such as that shown in Figure [4.2] simply
by driving over representative terrain. As shown in Figure the system extracts features
for a patch of earth ahead of the vehicle (Cell m) for the purpose of making predictions, but
it also stores this feature vector along with its distance from the vehicle when the features

28 Chapter 4. Learning a Terrain Model with Independent Cells

Time T Time T+N
Features for d=10
Features for d=9
Distance d Features for d=8
U Fearures for d=1

Figure 4.2: Traversable terrain
Figure 4.3: Approach for training traversable
terrain

]|+ ¥

Figure 4.4: Untraversable obstacle Figure 4.5: Interface showing manual train-
ing of untraversable obstacle

were computed. As the vehicle drives towards this area, it recomputes these features using
any new data that has arrived, and these feature vectors are also stored. Finally, when
the vehicle drives over that patch of earth, it determines the true ground height from the
location of its rear wheels, and correlates this true height with the set of feature vectors
collected from different distances. This set of feature vectors and its corresponding true
height are then given to the learning algorithm to improve its predictions in the future.

The learning approach described in Figure [4.3|allows the system to easily collect massive
amounts of training data in representative terrain, but untraversable obstacles like the small
vehicle in Figure 1.4 must be trained manually. Figure shows our user interface that
allows the operator to manually select untraversable obstacles and assign them a true height.
The process of storing features as in Figure [£.3] happens automatically for all cells, but only
feature sets that have a corresponding true height are used as training data for the learner.
This true height can be found automatically by driving over an area, or manually by an
operator giving the true height for a group of cells. The true height is often the “highest
point” feature for obstacles, but other features such as “lowest point” can also be selected
as the manually entered true height for the feature sets from a group of cells.

4.2. Feature Extraction 29

4.2 Feature Extraction

As described in section sensor information is accumulated over time in a global voxel
representation. Each voxel is a 15cm cube, and maintains laser hits, laser pass-throughs,
and other appearance information for that voxel. The small voxel size is needed because
laser pass-throughs in vegetation become more unlikely for larger voxel sizes. We make
predictions for each 15c¢m square cell on the ground, corresponding to a column of voxels.
However, the data in a single 15cm wide column of voxels is not enough to get meaningful
results for many of the features based on the distribution and shape of points, so we combine
multiple cells together and extract features from all the points in a 3x3 neighborhood of
voxel columns. The resulting 45cm x 45cm patch on the ground is approximately the same
size as the rear wheel contact surface we use to measure true ground height.

4.2.1 Distance

Many features are dependent on how far away from the vehicle they are when they are
observed and how many laser range points are in the cell. Figure [4.18]| shows a plot of a
learned surface and the associated 95% prediction intervals for the difference between true
ground height and the 'lowest point’ feature using a small dataset taken in vegetation. The
plot shows that the performance of using the "lowest point’ feature to predict ground height
is dependent on the distance and number of points. The surface was learned using the
techniques given in section [4.3] The surface shows that the lowest point becomes a worse
predictor of the true ground height at greater distances. The prediction intervals show that
predictions using lowest point can be more certain at closer distances and when there are
more points in the cell.

Because of observations such as these, we include the number of points in a cell and the
distance from the tractor of a cell as features for the learner to use. This allows the learner
to automatically find relationships such as those in figure [£.18| to produce better predictions
and more accurate prediction bounds.

4.2.2 Simple Statistics on Height

We extract several simple features based on the height of points in a column of voxels,
including the mean height and robust lowest and highest point (5% and 95% height value).
Figure shows the view from the vehicle as it approaches a transition from low grass to
tall weeds on relatively flat ground. Figure [4.7] gives the robust highest point feature. The
highest laser measurements in the low grass under and behind the vehicle are approximately
at ground height and are displayed as a dark gray. The highest points in the tall grass in
front of the vehicle and near its right wheels are at the height of the 1m tall grass and
are displayed as a light gray. Figure [£.8] shows the robust lowest point feature using the
same color scale for height. Comparing Figure with Figure [£.7] shows that the laser
was able to penetrate the small patches of weeds near the right wheels of the vehicle as
well as a short distance into the tall weeds in front of the vehicle. The highest point and
lowest point in these areas are very different, and the lowest point gives the true ground
height. However, for most of the tall weeded area in front of the vehicle, the lowest point
and the highest point nearly match because the laser only gets measurements of the top of

30 Chapter 4. Learning a Terrain Model with Independent Cells

the vegetation. The true ground surface is hidden below these measurements. Since the
highest and lowest point features for areas a few meters away from the vehicle match closely
for both low grass and tall weeds, but the difference between these features and the actual
ground height is very different in these two cases, other features are necessary to allow the
learner to discriminate between these two cases and correctly find the true ground height.

4.2.3 Shape of the Point Cloud

Analysis of the eigenvalues of the covariance matrix of the points in a cell gives information
about the shape of the point cloud, which can be used to differentiate different terrain types.
We incorporate the three shape features discussed in [Vandapel et al., 2004] that are able
to separate different types of point clouds (line, plane, scatter). These features are meant
to be applied over a neighborhood, so for each set of voxel columns, we find the 3x3x3
cube of voxels with the highest point density and find the shape features from this data.
Full classification and grouping of all 3D data as in [Vandapel et al., 2004] could increase
performance further.

Figure shows the first shape matrix feature, which is also the variance from a plane
fit. The laser points in the tall weeds are more scattered than the laser points in the low
grass region, so the variance to a plane fit is higher. However, many areas in the tall weeds
have low values since the points from the top of the weeds can align in a plane in a similar
way to the low grass, especially at greater distances where the laser ray angle is very shallow.

4.2.4 Voxel Hit and Pass-Through Information

Several features are computed from the voxel hit and pass-through information and are
useful to determine if an area is solid. In general, areas with a mixture of hits and pass-
throughs are vegetation, whereas solid objects have a higher percentage of hits. As a
vegetation indicator, we compute the ratio of pass-throughs in voxels with hits to the total
number of pass-throughs. To detect solid objects, we compute the percentage of hits for
each voxel and then sum the result. Finally, we compute the difference in the number of
hits in adjacent columns of voxels to detect vertical solid surfaces (solid obstacles generally
have a “shadow” behind them where there are no range points).

Figure [4.10] shows the ratio of pass-throughs in voxels with hits to the total number
of pass-throughs. This feature is high when there is tall vegetation that the laser can
penetrate, such as the front of the tall weeds section, because there are many pass-throughs
in mixed voxels that are likely to be vegetation. The remainder of the tall weeds section
shows a mix of high values when the tops of the weeds have varied heights, and low values
when the tops of the weeds are fairly constant height.

4.2.5 Appearance

The maximum laser remission (reflectance) value in a cell is used as a feature that can help
differentiate between different materials. Figure shows that most sections of the tall
weeds region have a high remission value.

We can also project values from the infrared camera and color cameras into the grid rep-
resentation, but these appearance features were not available when most of the experiments
in this chapter were performed.

4.2. Feature Extraction 31

Figure 4.6: View from tractor of grass to Figure 4.7: Highest point feature
tall weeds transition

Figure 4.8: Lowest point feature Figure 4.9: First shape matrix feature
(variance from a plane fit)

Figure 4.10: Pass-through ratio feature Figure 4.11: Laser remission feature

32 Chapter 4. Learning a Terrain Model with Independent Cells

4.3 Function Approximation (Learning)

Many general function approximators are available, such as neural nets, radial basis func-
tions, locally weighted regression, and many others. A learning method should be able to
run online, handle many dimensions (ignoring meaningless dimensions), and produce pre-
diction intervals! on its output. We focus on locally weighted regression (LWR) because
it provides these capabilities. The rest of this section describes linear regression, locally
weighted regression, and an online version of locally weighted regression.

4.3.1 Linear Regression

Linear regression is a common and powerful statistical method for estimating the parameters
of a linear model from data. The least-squares estimate of these parameters has its roots
in work by Gauss nearly 200 years ago |[Gauss, 1809] and details can be found in any
introductory statistics textbook.

For a set of input vectors x; and output values y;, a linear model with parameters
can be written as

x! B =y (4.1)

where the constant 1 has been included in x; to handle the offset term. Linear regression
finds the parameters § that minimize a cost function, which is normally the sum-squared
error, since the resulting estimate of 3 has a number of desirable properties [Ljung, 1987].
Under the assumption that the data came from a noise corrupted deterministic sampling
process

yi = f(xi) + & (4.2)

where ¢; are independent with zero mean and variance o2, and the assumed linear structure
of the function f is correct, then the estimate of 8 is unbiased and will converge to the
correct parameters with probability 1 as N — oo. If the disturbances ¢; have a Gaussian
distribution (02 unknown), then the estimate of 3 has a multidimensional t-distribution,
which can be projected into the output space to find prediction intervals for the prediction
of a new query X,.

Figure shows an example of linear regression. The least-squares estimate of the
line from the noisy data closely matches the true linear function. 95% prediction intervals
are also shown. Predictions are most certain at the center of the graph, where there is the
most data support. Given that the assumptions of the model are satisfied in this case, it is
expected that the estimate does well.

Figure [4.13] shows a nonlinear sigmoid function and the resulting least-squares linear
estimate. The estimate succeeds in finding the general trend of the data, and the prediction
intervals correctly represent its lack of predictive capability, but a global linear model does
not have the representational power to capture the nonlinear nature of the true function.

!Prediction intervals give the range where new data points are expected to be and include both the
uncertainty in the data and the uncertainty in the learned model. These are more useful in our domain than
confidence intervals, which give the range where the model parameters are expected to be and only include
the uncertainty in the learned model, since we are ultimately more interested in the quality of the learned
model’s predictions than in the quality of its parameters.

4.3. Function Approximation (Learning)

33

Example of Linear Regression with Linear Data

—— True function

* Noisy data
150 — Least-squares estimate
- - - 95% prediction interval

Figure 4.12: Linear regression for a linear
model

Example of Locally Weighted Linear Regression

22— T
— True function '
* Noisy data !
150 — Locally weighted estimate
- - - 95% prediction interval

Figure 4.14: Locally weighted linear regres-
sion for a nonlinear model

Example of Receptive Field Weighted Regression

2
— True function ,
* Noisy data ,
1.5 — Locally weighted estimate !
- - - 95% prediction interval L7
—— Receptive field weights . f;g, o

Figure 4.16: Receptive field weighted re-
gression for a nonlinear model

Example of Linear Regression with Nonlinear Data

—— True function

* Noisy data
150 — Least-squares estimate
- - - 95% prediction interval

B3

Figure 4.13: Linear regression for a nonlin-
ear model

Example of Locally Weighted Linear Regression

T T — T

— True function | RN

* Noisy data |

15 — Locally weighted estimate |

- - - 95% prediction interval
T

Figure 4.15: Locally weighted linear regres-
sion for a nonlinear model with incorrect
bandwidth

Example of Receptive Field Weighted Regression

2
— True function
* Noisy data
1.5 — Locally weighted estimate !
1| - - - 95% prediction interval .
—— Receptive field weights A M0
R o

-1 -0.5 0 0.5 1

Figure 4.17: Receptive field weighted re-
gression for a nonlinear model with incor-
rect initial receptive field size after training
on the data for 20 iterations

34 Chapter 4. Learning a Terrain Model with Independent Cells

4.3.2 Locally Weighted Regression

To be able to represent nonlinear functions while maintaining the computational and the-
oretical advantages of linear regression, a number of researchers have investigated locally
weighted regression (LWR) [Atkeson et al., 1997] [Schneider and Moore, 2000]. LWR uses
a kernel function such as a Gaussian to weight the data points differently, allowing nearby
data to have more influence on a prediction than data that is far away. Training is trivial
in LWR, and simply involves the addition of a new data pair (x;,y;) into memory. Then,
when a prediction is desired for a new query point x4, a local linear model centered at the
query point is constructed just as in normal linear regression, except that the data points in
memory are weighted by their distance to the query point through the kernel function. This
process can model arbitrary functions, but uses the bandwidth of the kernel function as a
bias towards smooth functions that look linear (at least locally). The choice of bandwidth
has a large effect on LWR, and it is usually chosen using leave-one-out cross validation,
which can be performed very efficiently. [Schaal and Atkeson, 1994] has converted the pre-
diction intervals from linear regression into a locally weighted version that only uses the
data that is near the query point to determine confidence. The size of the prediction bound
depends both on the density of data points in the area, and on the noise in the outputs of
nearby data points that cannot be explained by the model. These bounds are only correct
if the LWR estimate is unbiased at the query point, which is usually difficult to determine,
but if the bandwidth is correct then the true function should be linear in the region around
the query point so this is a weak assumption.

Figure 4.14] shows the result of using LWR to find the nonlinear sigmoid curve from
figure A global bandwidth parameter was found using leave-one-out cross validation.
The curve matches the true function well, and the prediction intervals show useful infor-
mation. The intervals show that the estimate is unreliable to the left and right where there
is no data, as well as being less reliable around x = —0.4 where there is a gap in the data.
They also show reduced confidence on predictions for the area on the right where the data
points have more noise.

Figure [4.15] shows the result of a poorly chosen kernel bandwidth, where the function
fits the noise. In this case, only very nearby data points are used for the regression, so
the result is similar to nearest-neighbor, which performs poorly with noise. The prediction
intervals are very wide because each local regression is performed with just a few points so
it has little confidence in its result. If the bandwidth is chosen poorly in the other direction,
all the data points contribute to the regression, and the result will approach global linear
regression as shown in figure [4.13

There is another problem with memory based locally weighted regression. All the data
is stored in memory, so as more data is collected, the predictions become slower. LWR
has been implemented using K-d trees [Atkeson et al., 1997], which can find nearby points
very quickly. However, this does not solve the problem that predictions become slower as
more data is collected. In our application, the learning system continually collects data to
improve its models so storing all the data in memory is not feasible.

4.3. Function Approximation (Learning) 35

4.3.3 Receptive Field Weighted Regression and Locally Weighted
Projection Regression

[Schaal and Atkeson, 1998] has extended LWR to work online with a continuous stream of
data using a technique called receptive field weighted regression (RFWR). The essential
point of RFWR is to build up a number of locally linear models during training that
maintain sufficient statistics about the actual data points. Omnce this is done, the data
can be thrown away and new predictions are made from a weighted combination of linear
models instead of the data points directly. A forgetting factor is used to slowly discount
old experience as it is replaced with new data. Each local linear model maintains a region
of validity called a receptive field.

Figure shows the result of using RFWR to fit the sigmoid. The bumps at the
bottom of the plot show the strength of the receptive fields for each individual local model.
RFWR maintains a covariance matrix on the regression parameters for each local model as
well as estimates of the noise of the data, so prediction intervals can be computed as shown
in the figure.

RFWR uses gradient descent to locally optimize the size of the receptive fields. Local
optimization is important for online implementation because adding a single data point
only affects a small number of receptive fields. RFWR adds new fields when there is no
current receptive field at the location of a new data point, and it prunes fields if they overlap
too much with their neighbors. Figure [4.17] shows the local optimization of the receptive
fields. The same incorrect kernel bandwidth used in figure was used to initialize new
fields. After being trained for a single iteration on the data, there were 35 receptive fields
and the result was overfitting similar to figure However, by continuing to present
random permutations of the same data, the algorithm pruned many fields and made the
remaining ones larger to produce the result shown in figure [4.17] with 15 receptive fields
after 20 iterations.

More recently, this algorithm has been extended to also handle high dimensional spaces
(including redundant and irrelevant dimensions) with locally weighted projection regression
(LWPR) [Vijayakumar and Schaal, 2000] [Vijayakumar et al., 2005]. This technique uses a
hierarchy of projections in the input space to fit a local model to a low-dimensional manifold
embedded in the high-dimensional space. For the single-dimension example figures in this
section, this algorithm gives results similar to RFWR shown in figures and As
with LWR, the size of the prediction bound depends both on the density of data points in
the area, and on the noise in the outputs of nearby data points that cannot be explained
by the model [Vijayakumar et al., 2005]. Our system uses LWPR for its online learning
mechanism.

4.3.4 Comparison to Other Learning Algorithms

Other general function approximators can also fit nonlinear functions, but LWR and its
variations have several important advantages that are due to their local nature. Because
LWR maintains a database of training examples (or a set of local linear models), it does
not suffer the same interference problems that globally optimized techniques such as neural
networks experience when previously learned relationships are “forgotten” as the net tries
to accommodate new data. Neural networks also have difficulty with local minima during

36 Chapter 4. Learning a Terrain Model with Independent Cells

o
o
1

Lowest - True (m)

P SR
7":"/’6"%

LT RRITIRIL RIS
100 >?\ ‘“«\l' "I"‘00 g 14
[XLLIKKN”
Num Points 20 oo Distance (m)

Figure 4.18: Learned surface and prediction intervals showing that the performance of using
the lowest point to predict ground height is dependent on distance and number of points.

the complex global optimization process. LWR evades these problems by only looking at
local problems that are easy to optimize locally. The statistical foundations of LWR also
allow straightforward computation of prediction intervals.

Traditional problems with locally weighted learning include prediction times that are
dependent on the number of data points in memory, and a difficultly with high dimensional
spaces. The LWPR algorithm [Vijayakumar et al., 2005] described in the previous section
has addressed both of these problems by maintaining a set of local models instead of the
actual data points, and by performing local dimensionality reduction. The dimensionality
reduction of LWPR assumes that the input data actually lies on a low-dimensional manifold
embedded in a higher dimensional space. Therefore the algorithm becomes slower as the in-
put data fills more of the input space. In our experiments, the algorithm slows down during
initial training as it adds new receptive fields to cover the input data, but then it stabilizes
once the relevant parts of the input space are covered. The system produces estimates for
the area in front of the vehicle at approximately 1Hz, but most of this computation time is
spent calculating features (especially the point cloud shape features which require singular
value decomposition).

4.3.5 LWPR Example

Our online system uses LWPR as its function approximator. Figure shows an example
of LWPR for a simple two dimensional problem. The inputs are the number of points in a
column and the distance of the column from the vehicle, and the output is the adjustment to
the lowest point in the column to get the true ground height. The plot shows the training
data points, the learned surface, and the prediction intervals. This example shows that
at closer distances and higher numbers of points, the lowest point in a column is a better
predictor of ground height (the adjustment is smaller), and the confidence in that prediction
is higher (the prediction intervals are narrower).

4.4. Results 37

-
oo

-
(=)
T

514t

2 qof

[

3 1ol

£ 10 Site A

e

5 st

o

2

© 6

=

3 4t

s
ol
o ‘ ‘ ‘ ‘
0 500 1000 1500 2000 2500

Training samples

Figure 4.19: Adapting to Environmental Change

4.4 Results

We have tested the system described in this chapter at a nearby working farm and an
undeveloped area with tall weeds. Results show that the system can find obstacles in
sparse vegetation and improve predictions of vehicle safety quantities such as roll. We also
show the benefits of adapting online when the vehicle encounters challenging new terrain
and give an example that includes prediction intervals on its output. These results use
only the laser features described in section except for the prediction intervals result in
section [4.4.5] which also uses color features.

4.4.1 Adapting to Environmental Change

To test the ability of the system to automatically adapt to a change in the environment, we
collected data from two test sites and split the data from each site into a training and test
set. Site A consisted of challenging dense vegetation approximately 0.75m high, and Site B
had sparse vegetation of heights up to 1m high as well as gravel roads without vegetation.
The training data from Site A was presented to the learning algorithm, and the prediction
error on the corresponding test set from Site A was periodically computed. Figure .19
shows the algorithm learning the characteristics of this site and reducing prediction error
on the test set. Then, starting with sample 1000, the system was presented with data from
Site B. After being trained in the first site with dense vegetation, the algorithm initially
did poorly in the new site with roads and more varied vegetation. However, the learner
quickly adapted to the new environment and ended up with a prediction error similar to
an experiment that only trained at Site B.

Although not shown in Figure[£.19] if the system returns to Site A after sample 2500, the
prediction error becomes slightly higher than the error at sample 1000 at the end of the first
training session in Site A. This means that despite the local nature of the learning algorithm,
there is still some interference between these two training sites. A richer feature set that is
better able to separate these two sites in feature space may perform better. However, even
if the training from a previous environment does not help in a new environment, the system
is still able to adapt to the current conditions and perform well in the new environment.

38 Chapter 4. Learning a Terrain Model with Independent Cells

Height (m)

East (m) 0 North (m)

Figure 4.20: View from tractor of person Figure 4.21: Highest point surface
kneeling next to sparse vegetation

Height (m)
Height (m)

2

East (m) 0 North (m) East (m) 0 North (m)

Figure 4.22: Lowest point surface Figure 4.23: Learned result removes the
vegetation but keeps the person

4.4.2 Obstacle in Vegetation

Figure shows an example of a person kneeling among tall sparse vegetation. The angle
of Figure makes it difficult to see the taller weeds, but the highest point statistic in
Figure shows that the kneeling person is beside various vegetation of a similar height.
Because the vegetation is sparse, the laser was able to penetrate through the tall weeds
and the lowest point feature in Figure [4.22| gives a good representation of the ground plane,
but it makes the person disappear along with the vegetation. From these figures, it is clear
that using a simple statistic such as the highest or lowest point will lead to false positives
or false negatives in the presence of vegetation.

Instead of hand-crafting a set of rules and thresholds for how to combine our features
to accomplish this task, we used the learning method described above to find the mapping
automatically. We drove around in similar types of vegetation for approximately 10 minutes
to let the system learn what types of features represent compressible objects. To teach it

4.4. Results 39

Figure 4.24: Person kneeling behind sim- Figure 4.25: Highest point surface
ilar height sparse vegetation

Figure 4.26: Lowest point surface Figure 4.27: Learned result removes the
vegetation but keeps the person

about solid objects, we drove up to a set of walls, posts, and hay bales and then manually
selected them to be trained using the highest point as the truth value.

After this simple training procedure, the learning system was able to produce the results
shown in Figure [£.23] The vegetation has been removed, thus reducing false positives, but
the person remains and would trigger a clearance hazard.

Figure gives a similar example, except this time the person is hidden behind the
vegetation. The person is sitting back on his feet, so the lowest point feature in Figure [4.26
recovers the person’s lap, but this may not be tall enough to trigger a clearance hazard. The
system output in Figure again shows that the system has learned how to discriminate
between sparse vegetation and a solid obstacle. This example is more challenging than the
previous one in Figure and the dense bases of the vegetation in front of the person
and at the left edge are not removed. However, a vehicle using this result to navigate would
still choose to drive through the vegetation and avoid the person.

40 Chapter 4. Learning a Terrain Model with Independent Cells

Height (m)

North (m) 0

Figure 4.28: Tractor driving through Figure 4.29: Lowest point surface
weeds on a slope

Roll (deg)

Height (m)

-30[f = Lowest .
o Learned
— True
o 00 East (m) 3% 10 20 30 40
orth (m) Time (s)
Figure 4.30: Learned result removes the Figure 4.31: Learned result produces
vegetation and retains true slope more accurate roll predictions than using

lowest point

4.4.3 Roll Predictions in Vegetation

This experiment further investigates the effects of ground estimate quality on vehicle navi-
gation. As described in section[I.2] the local navigation system uses ground height estimates
to predict if the vehicle roll and pitch will be within safety constraints for a given control.

Figure shows the vehicle traversing a slope with vegetation. Using the lowest
point as shown in Figure results in overestimating the ground surface in some of the
taller vegetation on the left. After training our system by driving it through some similar
vegetation for approximately 10 minutes, it produces more accurate height predictions as
shown in Figure [£.30] From the system level, we really care about predictions of safety
parameters such as roll and pitch. Figure shows that the improved height estimates
result in better roll predictions when compared to the true value found when we drove
over that area. The terrain sections shown in Figures and were used for the roll

4.4. Results 41

predictions 20 seconds into the test and explain the poor performance using the lowest
point.

If the vegetation was on the bottom of the slope instead of the top, then making this
mistake could be dangerous because the system would believe that the vehicle could drive
on top of the vegetation instead of predicting that it would drop below the vegetation
and perhaps cause a roll-over hazard. Correct ground height estimates result in correct
navigation decisions.

4.4.4 Online Adaptation

We also performed a set of experiments in dense vegetation that the laser cannot penetrate
beyond a short distance to understand the benefits of adapting online. To make predictions
ahead of the vehicle in these circumstances, the system must use its prior experience with
similar terrain to determine an estimate of the ground plane. Figure shows the tractor
entering dense vegetation over 1m tall. The three graphs in Figures [£.33] to show the
results of three different ways to approach this difficult task. Each graph shows the error
from the true ground height of the lowest point feature and the predicted ground height
at a distance approximately 5m in front of the vehicle as it drives into the tall vegetation.
At the beginning, when it is driving through relatively short grass, the lowest point feature
works well, but after 10 seconds into the run when the vehicle enters the tall vegetation,
the laser cannot penetrate the vegetation 5m in front of the vehicle, and the predictions
must adjust.

The first case in Figure [£.33] shows a system that was trained in other vegetation in a
nearby area for approximately 10 minutes, but then the learning algorithm is turned off
during the test. Using only its prior experience it is able to handle the transition because
it has learned to discriminate between the low grass and the tall vegetation. However, the
vegetation that it was trained in was a different height than this vegetation, so there is a
fairly constant offset between the predicted ground height and the actual ground height,
which would result in many false positives for the system.

Figure shows the predictions of the system when it is started fresh with no prior
training but is allowed to adapt during the run. Without any experience, it fails to recognize
the transition to weeds and continues using the lowest point. However, after it enters the
weeds and collects some data, it adapts its predictions to match the vegetation height. Due
to its limited training, it continues to make errors about when to use the lowest point and
when to drop below it, but the adaptive capability of the system will allow it to get better
over time. The areas in Figure [£.34 where the system adjusts the lowest point match very
well with the true value. However, since it has just started training, it has essentially overfit
all features to that offset, and when it comes out of the tall weeds and re-enters the short
grass, it incorrectly lowers that area by this offset as well. Only after training for some time
in both types of vegetation can it correctly switch between the two.

The third case in Figure [£.35 shows what happens when the vehicle was trained just as
in the first case in Figure [£.:33] but then is allowed to continue adapting as it drives into
this new vegetation. Its prior training allows it to handle the transition from short grass
to tall weeds, and then it adapts to the new vegetation height so that it doesn’t have the
constant offset like in Figure

42 Chapter 4. Learning a Terrain Model with Independent Cells

— Lowest hit
— Learned

0.5

Deviation from the true height (m)

10 20 30 40
Time (s)
Figure 4.32: View from tractor of grass Figure 4.33: Learned result without

to tall weeds transition adaptation

— Lowest hit — Lowest hit
— Learned — Learned

0.5¢ 0.5

“w# Il : \‘ | \llI L l’ I l

o

Deviation from the true height (m)
Deviation from the true height (m)

0 1‘0 Zb 3‘0 40 o 1b 2‘0 3‘0 40
Time (s) Time (s)
Figure 4.34: Adaptation without previ- Figure 4.35: Learned result with online
ous learning adaptation

These results show the benefit of adapting online to the current conditions, but they
also show a weakness of the approach. The system makes predictions by looking at a single
grid cell in isolation. Without the context that humans use so effectively, the system is at
a great disadvantage because a patch of short grass and a patch of tall grass may have very
similar laser feature signatures, especially at a distance. Continually adapting online is one
way to give the system context by exploiting the local similarity of the world. However,
even with online adaptation, the ground estimates in tall vegetation shown in Figure
are very noisy and would cause false positives during autonomous navigation.

One of the reasons that the ground height estimates are so noisy is that the system makes
the strong assumption of independence between neighboring cells. Real ground heights are
highly correlated spatially, but the system does not take this into account, so the ground
height estimates do not resemble actual ground. The estimates could be smoothed, but a
blind smoothing operation may also smooth out a true obstacle like the kneeling person in

4.4. Results 43

section [£.4.2] Chapter [6] describes a system that relaxes this independence assumption and
produces smooth ground estimates while still finding positive obstacles.

4.4.5 Prediction Intervals

As described in section [£.3] the learning algorithm produces prediction intervals on its
output. This section shows the system output for a transition into tall vegetation similar
to the previous section, but includes prediction intervals on the result. The system used for
this test includes color and infrared data as features in addition to the range based features
used in the previous experiments.

Figure shows the view from the tractor of a transition from low grass to tall dense
weeds. The tall weeds have a strong yellow color, so including color in addition to range
based features better separates the different terrain types in the input feature space.

After the system was trained in similar terrain for a little over 10 minutes, it produced
the ground height predictions shown in Figure [£.37 The same predictions are shown from
the side with the sensor data in Figure [£.38] Figures and show cross-sections of
these predictions compared with the lowest hit or pass feature and the true ground height
found when the vehicle drove into the tall weeds. Note that Figures and show a
snapshot of the predictions at different distances in front of the vehicle (measured from the
rear wheels) at a given time, unlike the figures in section which show predictions for
a constant distance in front of the vehicle over time as the vehicle drove.

These results show that the system gives fairly accurate ground height estimates in the
low grass near the vehicle, but does not apply enough of an offset to the lowest point in
the tall dense weeds, which would likely cause a false positive for the system as it tried to
enter the weeds. The system applied an offset based on its expected vegetation height for
those features based on its training data. As in the previous dense vegetation example in
section the system’s expected vegetation height from its training data does not match
this test case, so the ground predictions are wrong.

The system produces prediction bounds on its estimates, which could be used to slow
the vehicle down in areas of high uncertainty, or avoid such areas completely. Figure [£.39]
shows the ground surface and +30 prediction bounds for this case. The prediction bounds
are also displayed in Figures and The true ground height is usually within these
bounds.

Figure [£.40] shows high uncertainty 5m in front of the rear wheels even though the
predictions are correct. This is the front part of the vegetation that the laser can penetrate.
Further in front of the vehicle, the laser does not penetrate the vegetation and the ground
estimates have a constant offset from true ground height, as discussed above. In both
Figures and the system becomes less confident in its predictions for farther
distances where it has less data.

44 Chapter 4. Learning a Terrain Model with Independent Cells

Figure 4.36: View from tractor

H m\\l\m.

1 Il

Figure 4.38: Side view showing ground
predictions and input data

—=— Lowest hit or pass
[| —— Learning (w/conf)
— True height

Height (m)

2 4 6 8 10 12
Distance along the path (m)

Figure 4.40: Height prediction compari-
son for left wheel

Figure 4.37: Learned height predictions

Figure 4.39: Side view showing +3¢ pre-

diction intervals

2 —=—Lowest hit or pass
—— Learning (w/conf)
1.5 |——True height

= 05
= s N
5 By o R W
L3} z ’ P L S
T Ow 7 ; ¥ N
' =Ty ;”\, 1 ey
] - 1 S . -
—05F T L .
1 i
-1.5
0 2 10

4 6 8
Distance along the path (m)

Figure 4.41: Height prediction compari-
son for right wheel

4.5. Summary and Limitations 45

4.5 Summary and Limitations

This chapter has described a system that produces improved predictions of vehicle safety
parameters by learning predictions of the load-bearing surface in vegetation while still
finding positive obstacles. The entire system runs online on our autonomous tractor test
platform, and can improve and adapt over time. A key benefit of this approach is that
the vehicle can generate labeled training examples of features at different distances just
by driving through an area of interest. This makes it easy to collect massive amounts
of training data quickly, which is important since one of the main difficulties in applying
machine learning techniques to outdoor vehicle navigation is the lack of labeled training
data [Dima et al., 2004a].

However, the results in dense vegetation still produce many false positives, the system
explicitly learns a vegetation height so it is not general across vegetation of the same type
with varying heights, and non-traversable obstacles must still be manually labeled. These
limitations served as motivation for the spatial model approach presented in chapter [6, and
are discussed below.

4.5.1 Independence Assumption

The strong assumption of independence between cells is limiting because it prevents the
system from including spatial context that could disambiguate cells in different types of
terrain that have similar features, as shown in Figure [£.42] Range features are often similar
between low grass and the top of tall dense vegetation, especially at farther distances. This
results in uncertain predictions from the learner in these cases. The noisy predictions in
Figure and the large prediction intervals in Figure [£.40] are evidence of this occurring.

One way to reduce this problem is to expand the feature set to better separate the input
features of different terrain types. However, this makes the learning problem more difficult
by increasing the dimensionality, and it also requires good features. Quite a bit of feature
engineering went into this approach to be able to separate different object types.

Chapter [6] presents a method for including spatial correlations in the terrain model to
disambiguate areas with similar features. This method includes a 3D model structure that
uses the data directly instead of extracting complicated features. The spatial correlations
help smooth the ground estimates and also help fill in predictions in areas with little or no
data.

4.5.2 Explicit Vegetation Height

This approach learns the mapping from features extracted from a column of data to the
supporting ground surface height. For dense non-penetrable vegetation, this results in the
system learning a typical vegetation height as a function of the input features which is then
used as an offset below the lowest hit feature for ground predictions. Because the system is
trained explicitly on the height of vegetation, it can perform poorly when it first encounters
vegetation of a new height or if there is vegetation of different heights with similar features.
These problems were shown in the experiments in sections and

Chapter [6] presents an alternative method that learns the properties of voxels instead
of columns and then tries to infer the location of voxel type transitions such as ground to

46 Chapter 4. Learning a Terrain Model with Independent Cells

o el e . P A A LI I AP PRI
o o0 et e St e %t TP e 0l Sl e
N L e e e O N S L)

Figure 4.42: Data from different types of terrain such as tall weeds on the left or low grass
on the right may appear similar within a single terrain patch

vegetation or vegetation to free-space. In this way, the system is able to infer vegetation
height from the data in the local area instead of training on it explicitly.

4.5.3 Obstacles

This approach requires non-traversable obstacle features to be trained manually. For the
experiments that used laser features to discriminate solid obstacles from sparse vegetation,
this process added some time to the training process but was feasible because the features
of the expected obstacles were similar. However, when appearance features such as color
are added to the system, it is not clear how to train the system to handle obstacles because
of the wide range of possible feature values. Active learning methods could help select
training examples [Dima et al., 2004a], but there still is the problem of finding example
obstacles that fill the space of input features for the many obstacles that could possibly be
encountered.

As described in section the learning algorithm used in this approach produces
prediction intervals on its output that are based on the output variation it can’t explain
and the amount of data support for that area of the input space. This means that the
prediction intervals are very large for unknown areas, which could be a good indicator for
obstacles.

The approach presented in chapter [6] exploits this idea by training on expected sub-
stances such as vegetation or bare ground and treating anything else as an obstacle.

Chapter 5

Markov Models

The assumption of temporal or spatial independence is often overly restrictive because
it ignores important correlations and it prevents the exploitation of prior knowledge of
dependencies in how these quantities change in time or across space. This chapter describes
various models and techniques for including these dependencies, and chapter 6] applies these
ideas to the problem of terrain modeling.

A common approach for relaxing the independence assumption and yet still remaining
computationally tractable is to assume that the stochastic process of interest obeys the
Markov property. This assumption says that if we know the present state, then knowing
past states gives no added information about future states. Given the present, the future
is conditionally independent of the past.

P(Xp1 | Xy Xy—1,y ...) = P(X1 | Xo) (5.1)

This implies that the current state X; captures all the relevant information from the past
and that the path of how the system reached that state is unimportant for predicting the
future. Although the state X may need to be prohibitively large for an actual system
to obey the Markov property, many models and techniques using this assumption with a
simplified state have had great practical success by adequately capturing the most important
relationships in the physical quantities being studied.

The Markov property can apply to spatial relationships as well as time dependencies.
For a one dimensional Markov chain along the discrete spatial index 1,

P(X; | X) = P(X; | Xi_1, Xis1) (5.2)

where X is the set of all states. In higher dimensions, we can define a neighborhood N; of
variables such that

P(X; | X) = P(X; | Xy;) (5.3)

As in the time domain, these assumptions allow spatial correlations and contextual infor-
mation to be included in a tractable way.

When using Markov models for modeling a physical phenomenon, we generally only
have access to noisy observations Y of the state X, which results in a hidden Markov model,
as shown in Figure In addition to the Markov property between states X, this model

48 Chapter 5. Markov Models

swe. (DD D—D—E
Y ORCRORORO

Figure 5.1: Graphical model of a hidden Markov model (or Kalman filter), showing the
dependencies between states X;_1 and X; and between states X; and observations Y;

makes the further assumption that the observations are conditionally independent given
the current state.
P(Y; | X, Y) = P(Y; | X;) (5.4)

As above, this implies that the state X; captures all the relevant information of the system,
and it further implies that any measurement noise is independent given the state.

A hidden Markov model encapsulates two separate components, a transition (process)
model, and an observation (measurement) model. The transition model describes the re-
lationship between neighboring states (in time or space) and is shown graphically by the
horizontal links between X;’s in Figure The observation model describes how observa-
tions are generated from states and is shown graphically by the vertical links between X;
and Y; in Figure 5.1

Different algorithms are used with these models depending on the structure of the
model, the types of transition and observation models, and the desired variables that are
being estimated. Estimating the state X from observations Y using a known transition
and observation model is described as inference or state estimation. Using data to find the
transition and observation models is generally called learning or parameter estimation.

The following sections describe some common model structures and their associated
inference algorithms for state estimation. Although varying substantially in form, each
algorithm uses an assumed model (perhaps learned from data) and noisy observations to
find estimates of state variables of interest. Chapter [6] describes how these model structures
can be used to represent natural assumptions about terrain.

5.1 Markov Chains and Hidden Markov Models

Hidden Markov models (HMM) have been successfully used for a wide variety of temporal
and spatial modeling problems, from position estimation [Maybeck, 1979a] to speech recog-
nition [Rabiner, 1989] to protein modeling [Krogh et al., 1994]. The discrete steps in space
or time of these models (Figure make them especially appropriate for computer mod-
eling and sampled data filtering. Although the details of the state estimation algorithms
depend on whether the states are continuous or discrete, the probabilistic inference proce-
dure follows the same steps since the underlying independence assumptions represented by
the graphical model in Figure |5.1| are the same.

Figure [5.2] shows two common estimation problems. In each case, we are trying to
estimate the state at X;, but the filtering problem only uses past and current data, whereas

5.1. Markov Chains and Hidden Markov Models 49

=)
Filtering

O ®
Smoothing

W ® ®

Figure 5.2: Filtering uses past and current data to estimate X;. Smoothing uses past,
current, and also future data to estimate X;.

the smoothing problem also uses future data to improve the estimate. The Markov property
described above allows us to decouple these problems.

letermg P(Yl;t,Xt) = P(}/l;t_l,Xt)P(YVt | Xt) (55&)
Smoothing PYir,Xy) = PY14—1, Xe) PV | Xo)P(Yegrr | Xo) (5.5b)

These equations lead to efficient recursive algorithms for both discrete and continuous
state hidden Markov models (this is explored in more detail in [Minka, 199§]). The following
sections describe the continuous state Kalman filter and Kalman smoother, and the discrete
state hidden Markov model and hidden semi-Markov model.

5.1.1 Kalman Filter

The Kalman filter [Kalman, 1960] [Maybeck, 1979a] is a recursive algorithm for optimally
estimating the state of a linear system with Gaussian noise corrupted measurements. It has
found great practical value and is the workhorse for position estimation and many other
state estimation tasks.

A key feature of the algorithm is its recursive nature, allowing a system to efficiently
run online and produce state estimates using current sensor measurements. The graphical
model in Figures[5.1] and [5.2 shows the conditional independencies that allow this recursive
estimation to take place. For example, at time ¢ in the ‘filtering’ part of Figure[5.2] we may
want to estimate the state X;. The graphical model shows that if we know X;_; then X,
is conditionally independent of the previous states and observations so they do not need to
be stored. Before the measurement Y; arrives, the transition model can be used to predict
the value of X; using the previous state X;_;1 which encapsulates all the information from
the previous measurements. Once the measurement Y; arrives, the observation model can
be used to update the estimate of X; by combining the prediction with the actual sensor
data. The predict and update steps relate to the two components in equation If the
transition and observation models are linear and the process and measurement noise are
Gaussian, the Kalman filter finds the optimal estimate of X; by performing these two steps.

50 Chapter 5. Markov Models

For a linear model with Gaussian noise, the state estimate is also Gaussian and can be
represented by its first two moments, its mean X and covariance @ (the state covariance
of a Kalman filter is generally represented as P in the literature, but) is used here to
prevent confusion with the probability operator P(-) used in this chapter). In the following
equations, the state estimate X and its associated covariance estimate () for a given time
step t; are shown before the measurement update as X (¢;) Q(t;) and after the measurement
update as X (tf) Q(t;r) which represents the optimal estimate and covariance at that time
step. Measurements Y also have an associated covariance R. The matrix ® represents the
state transition model and the matrix H is the observation model. The state transition
matrix ® maps states to states at the next time step, whereas the observation matrix H
maps states to measurements and is used in the following equations to give the expected
measurements for a given state.

Prediction Q(t:_) _ aQ(tt)aT (5.6)
X(t7) = X(t;) + K (Yi - HX(t;))

pdate Q) = Q) + KHQ(E) 0

Kalman Gain K=Q(t)H [HQ(t;)HT + R]il (5.8)

Equation is known as the Kalman Gain, which controls the weighting between the
prediction and the measurement update. The Kalman gain is determined by the ratio of
the state covariance Q and the measurement covariance R. As shown in equations and
5.8, when the predicted state has a high uncertainty (high @) relative to the measurement
uncertainty R, the Kalman gain K is high and the predicted state X (¢;) is moved strongly
in the direction of the residual error (Y; — HX(t;)) between the expected measurement
and the actual measurement to get the optimal estimate. Conversely, if the predicted state
uncertainty is low relative to the measurement uncertainty, then the Kalman gain will be
low, resulting in the measurement having less of an effect (it is more strongly filtered).

The Kalman filter is only optimal for linear Gaussian models, but many extensions
allow it to be applied to nonlinear problems with more complicated distributions. To
handle nonlinear process models, the extended Kalman filter [Maybeck, 1979b] linearizes
about the current state estimate and then applies the standard Kalman filter equations
(see positioning example in appendix [A.2), the assumed density filter [Maybeck, 1979D]
projects the true density to an assumed form that is easier to handle, and the particle
filter [Gordon et al., 1993] uses a set of samples to represent the distribution. Many other
extensions exist.

5.1.2 Kalman Smoother

The Kalman filter is well-suited to online estimation applications since it provides the best
estimate of X; given all the measurements that have been received up until time ¢t. However,
if measurements beyond time ¢ are available as in the ‘Smoothing’ part of Figure 5.2} then
a better estimate for X; can be computed by using all the measurements.

5.1. Markov Chains and Hidden Markov Models 51

The Kalman smoother [Maybeck, 1979b] uses a combination of two Kalman filters, one
running forward in time that incorporates Y7.; and one running backward in time that
incorporates Y;i1.7, to find the optimal estimate of X; given all the measurements Y7.7.
This decoupling is evident in equation In the Kalman smoother framework, each of the
two Kalman filters produces an estimate of X; and its associated covariance @), and then they
are optimally combined by weighting each according to their confidences). An equivalent
interpretation is that the backward running filter produces another “measurement” to be
incorporated into the forward running filter.

5.1.3 Discrete State Hidden Markov Models

Hidden Markov models (HMM) [Rabiner, 1989] with discrete states have the same graphical
model and set of independence assumptions as a Kalman filter, and the standard inference
algorithms use the same decoupling described in equations and Also like a
Kalman filter, an HMM model is specified by a transition model and an observation model.
However, instead of integrating a continuous Gaussian density as in a Kalman filter, the
inference algorithms involve a summation over discrete states.

As in the Kalman smoother, the distribution over a state variable X} is found from a
combination of a forward filter and a backward filter. Following convention, we define these
filters as a and 3 so that the general smoothing equation becomes

P(Yir, X =) = [P(Yi—1, Xpp = 2) P(Yy, | Xp = 2)] [P(Vey 1.5 | Xy =)]
= P(Yii, Xy =) P(YViy1:ic | Xi =) (5.9)
= oy () Br ()

The recursive formulas for the forward-backward computations ay(z) and S (x) given
below follow the notational conventions in [Rabiner, 1989], with observation model b;(Y%) =
P(Y) | X; = z) and transition matrix A(2’,2) = P(Xy = z | Xy—1 = 2’) giving the
probability of transitioning from state z’ to x.

Oék(l‘) = P(Xk = ‘rviflzk)
=P(Yy | Xy = 2,Y1.4-1)P(Xg = 2, Y1:01)
=P(Yi | Xp =2)) P(Xp=x|Xp_q =2)P(Xp_y =2, Yig_1) (5.10)

T

=0.(Y3) > A2, z)op_1 (')

T

Br(z) = P(Yiy1.x | X =)

=Y P(Xpp1 =2 | Xy = 2)P(Yir1 | Xpy1 = 2')P(Viyoxc | Xi1 = @) (511)

= Z Az, 2")by (YVis1) By ()

The forward filter ay(x) gives the joint probability of a specific state x and all the
observations up to k. The recursive step involves summing over all the possible state

52 Chapter 5. Markov Models

0.3 r . .
—— Exponential state duration distribution of HMM
0.25F\ |~~~ Explicit state duration of HSMM (ie Gaussian) |
> 0.2F _—
E e \
S 0.15} /! R
:% ,I \‘
0.1)/ Y
’ A}
’ \
0.05} ! \
0 =3 . -
5 10 15 20

State Duration

Figure 5.3: The prior distribution over the state duration in an HMM is exponentially
decreasing, whereas the prior distribution for an HSMM can be modeled explicitly

transitions and then including the current observation. This is similar to the Kalman filter:
the state is predicted forward, and then the state is updated with the current observation.

The backward filter (j(x) gives the probability of the future observations given the
current state z. The recursive step starts with the probability of the observations a step
in the future, includes the next observation, and then sums over the possible transitions
away from the current state. This is similar to the backward running filter in the Kalman
smoother.

5.1.4 Discrete State Hidden Semi-Markov Models

Conventional HMMs apply the state transition matrix A at every step, so that staying in a
single state x for multiple steps requires repeated self-transitions. This results in a geometric
distribution on the duration of each state, as shown in Figure In many applications,
an exponentially decreasing distribution is not appropriate because one may have prior
information about how long the system tends to stay in a particular state. A hidden
semi-Markov model (HSMM) (or segment model) [Ostendorf et al., 1996] |[Rabiner, 1989
[Murphy, 2002] includes an explicit prior distribution over the expected duration of each
state, so it can handle duration priors such as the truncated Gaussian shown in Figure[5.3

Figure gives the intuition for a hidden semi-Markov model. Unlike an HMM which
transitions (possibly to the same state) at every step, an HSMM stays in a single state for
some duration H, generating observations from that state at each step. Then, it changes
state according to the transition matrix A and remains in the next state for some duration,
generating observations from that state. The transitions between states remain Markov,
but the individual steps are not Markov since the probability of transitioning depends on
how long the system has been in that state, resulting in the name hidden semi-Markov
model.

HSMDMs use a variant of the standard forward-backward dynamic programming solution
described in section for inference in regular HMMs. The forward-backward compu-

5.1. Markov Chains and Hidden Markov Models 53

i [
1 State X =x, :_)E State X = x;,
i Duration / = hy i Duration H = h,

PO
Observations @ @ @ @

Figure 5.4: Intuition for a hidden semi-Markov model

State

tations for an HSMM [Ostendorf et al., 1996] [Rabiner, 1989] are still performed over the
individual spatial steps Xj like in an HMM, but an HSMM must solve for the duration of
each state, so in addition to summing over possible state transitions z’ like in an HMM,
we also sum over possible state durations h (we use the variable h for duration because
duration represents height in subsequent chapters).

The following equations include the state transition matrix A(z’,2) = P(x | 2'), the
observation model b, (Yk+h) P(Yi.k+n | ©, h) that gives the probability of a sequence of
observations for a given state, and the explicit state duration prior P(h|z) (see example in
Figure . The « and 3 equations for an HMM in and give the probability of
X = x. For an HSMM, the state £ may be active over a number of spatial steps along the
chain, so we instead find the probability that state x ends at step k.

ai(x) = P(state x ends at k, Y1.x)
=Y P(Xg =, Xpp =, Hy, = h, Y1)

= Z Z P(Yi_psr:k | @, h)P(h |)P(x | 2')P(state 2’ ends at k — h, YVi.p_p)
= Zzb (Vi i) P(h | 2)A(2',) op—p (2”)
(5.12)

Br(z) = P(Yiy1.x | state z ends at k)
= ZZP Yip1:x| Xk = @, Xjpqp, = ', Hpy = h)

= Z Z P(Yis1otn | @', h)P(h | 2)P(2' | €)P(Yiini1:x | state 2’ ends at k + h)

— Z Z by Ykkjlh (h | 2")A(z, 2") Brn(x)
(5.13)

For many problems, the observations are conditionally independent given the current
state, so the observation model becomes

k+h
be (Vi) = P(Yiehyn | 2,h) = [[P(Ye | @) (5.14)

54 Chapter 5. Markov Models

If the transition structure A(x, 2’) is a deterministic chain, so that each state has only
one possible transition, then equations[5.12)and [5.13|can be further simplified. We no longer
need to sum over 7’ since the transition matrix A is 1 for the deterministic transitions and 0
for all other possible states. We use the notation = and o to refer to the previous and next
states in the deterministic chain transition structure. The following equations for azham
and B,‘;h“m include this deterministic transition simplification as well as the conditional

independence of observations in equation [5.14

agh" () = Z H Py | z)| P(h | @)ag—p(z") (5.15)
n L=k —ht1
| r k+h
B (x) = Z H P(Yy | 2)| P(h|2")Bsn(a™) (5.16)
no L=k

5.2 Markov Random Fields

The Markov random field (MRF) |[Geman and Geman, 1984] [Besag, 1986] [Li, 2001] is an
extension of the one dimensional Markov chain models described above to two (or more)
dimensions, and it is commonly used to model structure in spatial domains. It has been
successfully applied to many applications in computer vision including segmentation, noise
reduction, surface reconstruction, and texture classification [Li, 2001], as well as other fields
such as statistical mechanics [Swendsen et al., 1992].

As shown in Figure a two-dimensional MRF consists of an undirected graph (often
with a lattice structure) of nodes X;;. Each node X;; within the set of all nodes Xg is
connected to a set of neighbors Xy, describing the Markov property of the field

P(Xij ‘ XS) = P(Xij ’ XNij) (517)

The structure in a Markov random field acts as a prior P(X) on the model that encodes
smoothness, class continuity, or other properties. To estimate the state X from data Y, we
use Bayes’ rule

P(X |Y) x P(Y | X)P(X) (5.18)

As in hidden Markov models, each state node X;; produces a measurement Y;;, and the
measurements are conditionally independent given the state

P(Y; | Xs,Ys) = P(Yy; | Xij) (5.19)
This allows us to factor P(Y | X) from equation

P(Y | X) = HP Yij | Xij) (5.20)

It is natural to specify a Markov random field in terms of its conditional distributions
that characterize its local Markov relationships. For example, the 4-neighborhood system in

5.2. Markov Random Fields 55

State ~(X, *l/ S\l/)

Observations

Figure 5.5: Graphical model of a Markov random field (all the state nodes X;; have a
corresponding observation node Yj;, but some are not shown to make the figure readable)

the MRF model in Figure [5.5] contains only pairwise neighbors, so we can define potentials
on single nodes Vi and pairs of nodes V5 and write the conditional distribution as

exp (— [Vl (Xi5) + ZsteNij Vo (X5, Xst)D
2 x,;eL OXP (— [Vl (Xig) + 2Lsreny, Vol Xij Xst)D

P(Xij ‘ XNij) = (5‘21)

where the normalizing constant is summed over all possible values £ of X;;.

Although the local characteristics in equation [5.21] are what we desire when we specify
an MRF model, we need to specify the joint probability P(X) over the entire field in order
to perform inference and learn parameters. Let us define an energy function U(X) as the
sum over potential functions of sets of neighbors. Continuing with the 4-neighborhood
example, we have

UX) = Z Vi(Xi5) + Z Z Va(Xij, Xot) (5.22)

ijes ijeSs stEN;;

Then the Hammersley-Clifford Theorem [Li, 2001] [Winkler, 2003] states that the joint
probability is a Gibbs field

P(X) = %exp(—U(X)) (5.23)

where Z is a normalizing constant called the partition function.

Unfortunately, the partition function Z is a sum over all possible configurations of X,
which makes it intractable except in special cases (such as the Gaussian MRF described in
section . For example, classifying a 16 by 16 image into 4 classes would require a sum
over 416*16 configurations to evaluate the partition function.

Z =Y exp(-U(X)) (5.24)
X

Specifying an MRF requires giving the form and parameters of the potential functions
V. The following sections describe how learning and inference are done in an MRF, and
then examples are given for a continuous state MRF and a discrete state MRF.

56 Chapter 5. Markov Models

5.2.1 Learning

We consider the problem of learning from known labeled data. The problem is more involved
if the parameters must be learned from noisy measurements only [Li, 2001].

Maximum Likelihood

A natural approach to learning the parameters 6 of an MRF from labeled training data X
is to find the maximum likelihood estimate

0" = arg max P(X |0)
(5.25)

exp(=U(X [0))

= arg max

1
Z(0)
However, this requires evaluating the partition function which is generally intractable, so
approximate techniques that are based on the conditional probabilities are often used.

Pseudo-Likelihood

Pseudo-likelihood approximates the true likelihood with the product of the conditional
likelihoods
PL(X) =[] P(Xi; | Xn;) (5.26)
ijes

The conditional likelihoods (equation do not involve the partition function and can be
maximized, but since X;; and Xy, are not independent, the pseudo-likelihood is not a true
likelihood. However, in the large lattice limit, the maximum pseudo-likelihood is consistent
if the model is correct [Winkler, 2003].

There are many other approximations that rely on the local properties of the field. See
[Li, 2001] for a survey.

5.2.2 Inference

Once the model parameters are known, it can be used as a prior to help constrain ambiguous
or noisy data. As in the hidden Markov models of section we use a transition model
P(X) and an observation model P(Y | X) to find an estimate of the state X

P(X |Y)x P(Y | X)P(X) (5.27)

MAP

The maximum a posteriori (MAP) estimate is found by optimizing the posterior distribution

from equation
X = argm)&(xxP(X 1Y)

(5.28)
= argm)?xP(Y | X)P(X)

If the observation model can be written in terms of an energy

P(Y | X) x exp(—U(Y | X)) (5.29)

5.2. Markov Random Fields 57

then this can be combined with the Gibbs field P(X) from equation to rewrite the
MAP estimate in terms of the log posterior

X* = argminU(Y | X)U(X) (5.30)

Equation does not involve the partition function since it is just a normalizing
constant, and there are many global optimization techniques available, such as simulated
annealing, that can be used to optimize this function. See [Li, 2001] for a survey.

Gibbs Sampling

As an alternative to global optimization, sampling methods [Robert and Casella, 2004]
[Winkler, 2003] can be used to generate samples from the posterior distribution P(X | Y).
Expectations and variances can then be calculated from these samples to find an estimate.

The Gibbs sampler [Geman and Geman, 1984] is particularly well suited for sampling
from an MRF because it produces samples based on conditional probabilities. Given a
current configuration, the Gibbs sampler holds all the nodes fixed except for one, and then
it generates a sample for that node from its conditional distribution.

sample X;; from P(X1; | Xn,,)
sample X, from P(X12 | Xni,) (5.31)

This process is continued across all the nodes and then repeated. In the limit, the sam-
ples generated by this process converge to the true distribution [Robert and Casella, 2004].
However, sampling methods often have high computational requirements because the con-
ditional distributions must be sampled many times, and it is generally difficult to show that
the sampling process has converged to the true distribution.

Minimizing posterior loss results in the MAP estimate and can be found using Gibbs
sampling along with simulated annealing [Geman and Geman, 1984]. Minimizing the num-
ber of misclassified nodes in a discrete classification problem results in the marginal posterior

mode (MPM)
X/ = argn)l(axP(Xij 1Y) (5.32)

v
ij

and is found by choosing the most frequently sampled label at each node after convergence
[Melas and Wilson, 2002].

5.2.3 Continuous State

A common MRF with continous state is the Gaussian Markov Random Field (GMRF)
[Kashyap, 1981] [Lakshmanan and Derin, 1993] [Bouman and Sauer, 1993]. A GMRF has
a Gaussian conditional distribution that makes it appropriate for smooth surfaces

1 2
P(Xij | Xny;) = = exp —ﬁ@%— > ﬁXst) (5.33)

2o {s,t}EN;;

58 Chapter 5. Markov Models

If we arrange the array of variables X;; by rows into a single column vector X of size
M = rows * cols, then we can write the joint probability of a GMRF as
[Lakshmanan and Derin, 1993] [Krishnamachari and Chellappa, 1997]

1

= ex —i Tyt
P(X)_(27r(f2)M/2 det(X) p(2‘72X . X> (534

where the inverse covariance ¥~ is a sparse matrix with 1’s on the diagonal, — 3 at locations
s,t whenever X and X; are neighbors, and zeros everywhere else.

Equation shows that unlike in the general case, the normalizing partition function
of a GMRF takes on a simple form. By further assuming the field is isotropic and by
choosing 3 = 1/|N| where |N| is the size of the local neighborhood (i.e. 8 = 1/4 in the 4-
connected case), the exponent in equation simplifies to a sum over pairs of neighboring
nodes [Bouman and Sauer, 1993]

1 1 1
P(X |o)= exp | ——— (X — Xg)? 5.35
(|) (27T0'2)M/2 det(Z) p 20_2 Z];/v ’N’ (J t) ()

where N is the set of all neighboring nodes. Differentiating the log of the likelihood in
equation [5.35|with respect to o and setting the result to zero gives a simple analytic equation
for the ML estimate of o in terms of pairs of neighboring nodes [Saquib et al., 199§]

1

~2 2

OGMRF = 371~ (X - X t) (536)
|N| 2],8215;./\/’ Z ’

Since M|N]| is the number of pairs of neighbors in A/ that the sum is over, equation m
is just the variance of pairwise differences. The simplicity of this result shows the ben-
efit of using a GMRF. Finding the ML parameters for an MRF is intractable in general
because of the partition function Z, but in the GMRF case when true realizations X of
the field are known (uncorrupted by measurement noise), the ML parameter estimate is
a simple summation over all the pairs of nodes. If a true realization X is not available
and one only has noisy measurements Y, then EM can be used to estimate the parameters
[Saquib et al., 1998].

Figure|5.6|shows a GMRF example of surface recovery from noisy data. The GMRF was
trained using noisy data Y with the true surface X known. An independent Gaussian noise
model was assumed, and the Markov assumption in equation [5.20| was then used to find the
maximum likelihood estimate of the noise standard deviation Gpeise = 0.3. A realization
of the true surface X was used to train the GMRF prior according to equation [5.36, and
this resulted in the maximum likelihood parameter 6gyrr = 0.165. Figure |5.6| shows that
despite the large amounts of noise, the GMRF was able to recover the true surface.

The previous example had perfect training data so it was able to recover the true
model parameters. Figure shows the GMRF reconstruction with incorrect parameters
Onoise = 0.5 and 6gmrr = 0.1. Increasing the assumed measurement noise and reducing
the expected variation in the GMRF prior both have an increased smoothing effect on the
result, which is evident in Figure

As discussed in the results of chapter [, a smoothing prior may not be appropriate
if the desired output includes a tall obstacle such as a person. Figure [5.8 shows that a

5.2. Markov Random Fields

True Surface Input Surface with Noise MREF Result

Figure 5.6: GMRF example with correct parameters

True Surface Input Surface with Noise MREF Result

Figure 5.7: GMRF example with incorrect parameters

True Surface Input Surface with Noise MREF Result

S = N W A

20

Figure 5.8: GMRF over-smoothing an obstacle

60 Chapter 5. Markov Models

GMRF smoothes away an obstacle. Edge-preserving filters such as a median filter could be
used in this case, but a more elegant solution may be to segment the ground and obstacle
and treat them separately. This will be done in chapter [6] but first we will describe MRF
segmentation into a set of discrete classes.

5.2.4 Discrete State

The simplest discrete MRF has a binary state and is known as the auto-logistic or Ising
model [Geman and Geman, 1984]. This can be generalized to handle more than two states,
and is then called the multi-level logistic (MLL) model [Li, 2001]. This model penalizes
transitions so it is often used in segmentation problems to find blob-like regions.

The conditional distribution of the MLL follows equation [5.21] If we assume no single
node potentials, then the model is fully specified by the pair-wise potential

Vo(Xij, Xot) = M Xij # Xst) (5.37)
giving a conditional distribution
exp (—)\ D siyen;, (Xij # Xst))

injeﬁ xp (_)\Z{S:t}ENw’ (Xij # Xst))

which simply counts the number of neighbors that are different and multiplies the sum by
the parameter A which specifies the penalty for state transitions (a higher value of \ results
in more smoothing).

The normalizing denominator for the conditional distribution in equation [5.38]|is a simple
sum over the possible values of X;;. However, the normalizing partition function for the
joint distribution (see equation is intractable for this case because of the combinatorial
number of possible configurations, so learning in this model requires approximate techniques
such as pseudo-likelihood.

5.2.5 Extensions

Many extensions to MRF's have been proposed to handle various applications. The following
methods are relevant to our modeling task.

Line Process

MRFs have been used extensively for texture segmentation, where the image is composed
of a number of contiguous regions of constant texture. To enable this segmentation, a line
process [Geman and Geman, 1984] has been used that acts as a break between neighbor-
ing textures. This idea could also be used to allow a discrete jump in an MRF surface
representation to avoid smoothing the obstacle in Figure [5.8

Double MRF

Another approach to handling texture segmentation is the double Markov random field
[Melas and Wilson, 2002|. This approach uses one MRF layer to classify textures and an-
other MRF layer that generates textures using separate parameters for each class. As above,

5.2. Markov Random Fields 61

this could be used with a surface representation to allow discrete jumps at class boundaries.
We take a related but different approach in chapter [} As in a double MRF, we maintain
a single MRF for class segmentation that interacts with another MRF representing the
ground surface, but instead of changing the parameters of the ground MRF depending on
the class, we interpret columns of data based on both the class MRF and the ground MRF.

3D MRF

Markov random fields have also been used to segment volumetric data stored in voxels.
Many medical imaging devices produce 3D data, and MRFs have been used to segment
various organs such as brains [Zhang et al., 2001]. A 3D MRF works the same as a 2D
MRF, except that the neighborhood is larger and inference and learning require much more
computation. Although we have a voxel representation to store our 3D data, our world
model and our desired output consists of a classified ground surface with heights on it. As
described in chapter [6] we exploit this structure by keeping the computationally demanding
MREF structures 2D and handling our 3D data in terms of columns.

Chapter 6

Learning a Terrain Model with
Spatial Dependencies

Most rough-terrain navigation approaches, including the online learning approach in chap-
ters [3| and [4) make the strong assumption that individual patches of terrain are independent
of each other. This chapter will show how the spatial Markov models presented in chapter
can be used to relax this assumption by including spatial correlations to model natural
terrain and better interpret sensor data, especially when there is missing or ambiguous
data. As described in chapter [I, the desired output is a local terrain model consisting of
the supporting ground surface and the location of obstacles.

Section describes the spatial correlations included in the model. The subsequent
sections describe the data representation, the terrain model and how it encodes the de-
sired spatial correlations, inference and learning in the model, run time considerations, and
results. Chapter [7] compares this approach with the independent approach in chapter

6.1 Spatial Correlation Assumptions

The assumption of independence between neighboring terrain patches can be justified be-
cause of simplicity or computational reasons, but it really does not describe actual terrain,
especially in areas where a vehicle may drive. For example, the ground is generally smooth
with a slowly changing height, so the ground heights of neighboring terrain patches are
highly correlated. The ground also may contain occasional holes, ledges, and rock walls,
but these are exceptional cases, and could be described as special types of obstacles in
smooth ground.

Another natural assumption is that similar substances are near each other. Classes have
continuity through space. If one patch of terrain is road, then the area around it is also
likely to be road. Vegetation is the same way, especially in agricultural settings where an
entire field has a uniform crop.

Vegetation of the same type is also likely to have a similar height. This is especially
true in agricultural settings, but even in more general exploration domains, vegetation
tends to have a common height. This assumption is different from the ground smoothness
assumption in two ways. First, we expect more variation over vegetation height than
ground height. Second, and more importantly, the ground smoothness assumption is for a

64 Chapter 6. Learning a Terrain Model with Spatial Dependencies

neighborhood, whereas the variation in vegetation height is over the entire area around the
vehicle. A single stalk of vegetation may have a different height than its neighbor, but all
of the stalks in a given area are likely to have a similar height.

Finally, for the domains we are considering, we expect a vertical orientation of substances
because of gravity. We expect to see ground, then maybe some amount of substance (vege-
tation or obstacle), and then free space. This constraint could easily be expanded to handle
overhanging obstacles such as tree branches, but by looking at the world as a set of columns,
it will be difficult to find things like suspended wires whose only structure is horizontal.
However, organizing the model in columns greatly reduces the computational requirements
when compared to a full 3D model. Also, we believe that in our application domains the
world basically consists of a ground surface with stuff on it, and we would like to exploit
that knowledge in the model.

6.2 Data Representation

As described in section [I.2] our test platform is an automated John Deere 6410 trac-
tor equipped with many sensors for localization and perception. The vehicle has a high-
resolution stereo pair of digital cameras, an infrared camera, and two SICK laser range-
finders (ladar) mounted on custom actively controlled scanning mounts. The first scanning
ladar is mounted on the roof to get range data over a large area in front of the vehicle,
and the second scanning ladar is mounted on the bumper to get high density measurements
of nearby terrain and better penetrate upcoming vegetation. The cameras and scanned
ladars are precisely calibrated and tightly synchronized with an accurate global vehicle
pose estimate. Appendix [A] has more details about the sensors and positioning system.

The basic representational structure of our terrain model is the vozel: a 15cm? box-
shaped region of 3 dimensional space. We represent the vehicle’s spatial environment as a
3D voxel grid with indices (i,7,k), where 0 <i< I, 0<j < Jand 0 <k < K. We use k
to index the vertical dimension, so the ijkth voxel is in the ijth position of a horizontal 2D
grid and the kth position above an arbitrary subterranean origin.

Accurate global vehicle pose allows us to assign ladar points corresponding to the same
region of space to the same voxel. Exploiting the precise synchronization of the sensors, we
project ladar points into the most recent color and infrared images, so that each ladar point
results in a vector of appearance measurements for that voxel, including laser remission
(reflectance), infrared temperature, and color.!

The voxel representation also allows us to maintain a density estimate throughout space
by comparing how many ladar rays pass through each voxel (pass-throughs) with the number
of ladar rays that hit something in that voxel (hits). Density information is valuable when
trying to separate sparse vegetation that contains a mixture of hits and pass-throughs from
solid objects that contain a majority of hits and only a few pass-throughs due to sensor
noise [Lacaze et al., 2002] (see Figure [1.4]in chapter [1)).

!The ladar scans come in at a much higher rate than the image data so multiple scans are projected
into the same image. However, the high pixel density of the images means that we collect approximately
100 pixels for every ladar point. This coupled with the continual movement of the scanning ladars makes it
unlikely that a single pixel is used more than once, so we treat each color and infrared tagged ladar point
as an independent measurement.

6.3. Terrain Model 65

Although our data representation is based on the voxel, vehicle navigation is generally
performed on a 2D surface, so our ground height estimates and classification results are
made in terms of voxel columns. In our model, the ijth voxel column class is described
with a multinomial distributed random variable C;; taking on values related to the possible
contents of the column, C;; = ¢ with e.g. ¢ € {ground, vegetation, obstacle}.

Associated with the kth voxel in the 7jth voxel column is the voxel state Xikj: a multino-
mial distributed random variable that describes the nature of the material inside the voxel,
Xikj € {ground, c, free-space}, where c is the class of the ijth voxel column.? The ijkth
voxel is also associated with the observation vector ij = [Yien, Yrem, Yir, Yeor], containing
vectors of N ladar hit and pass-through density measurements of which the M hits include
laser remission values, infrared temperatures and color data (i.e. Yge, = [Ydlen, ... ,ngn],
Yiem = [V, ., Y M),

rem? © rem

6.3 Terrain Model

We use a probabilistic generative model to encode the desired spatial correlation assump-
tions described in section [6.1} The following sections describe the model in detail at three
different levels:

e Voxel observation models
e Vertical column structure

e Horizontal neighborhood structure

These sections build on each other from the inside out, going from an individual voxel to
a voxel column to the entire grid of voxel columns. Figure [6.1] gives a graphical model
representation of each of these levels and makes the relationships between the different
variables explicit.

Before diving into the details of the model, we provide some context by exploring the
generative nature of the model. We describe the process of generating data from our
model, starting from the outside and working our way in. Figure gives the neighbor-
hood structure that encodes our three main assumptions from section class continuity,
smooth ground, and similar vegetation height. Figure shows that the states X;; and
observations Y;; in a voxel column ij are dependent on the class Cj;, ground height Hfj,
and class height Hfj These three quantities are dependent on their neighbors N;; and the
common class heights H¢ that store the typical vegetation heights for each class of vegeta-
tion. From a generative point of view, if we have the common class height and the classes
and ground heights from the neighboring voxel columns, we can generate a class, ground
height, and class height for this voxel column.

Figure[6.1(b)|expands the state Xi; of a voxel column into the individual voxel states X, Z";
arranged vertically such that they obey our assumption from section that each column
contains ground states, then class states, and then free-space states. Our generated class
from above determines what substance we transition to between ground and free-space. Our

2TIn our implementation, the possibility of a voxel column simultaneously containing obstacle and vege-
tation is excluded, though its inclusion is a simple extension of the model we present.

66 Chapter 6. Learning a Terrain Model with Spatial Dependencies

C; = Ground Gy

I
S
<09
<3
iy
s
2
=
D
I
.}
S
g
o
<3
Q

Free-Space
Free-Space

Free-Space

v
®
Vegetation
v
®
Obstacle
v
©

v
®
Ground

Ground

v
®
) Ground
-6
v
®
}7 ;‘E

(a) Voxel model (b) Voxel column HSMM vertical structure (¢c) MRF neighbors

Figure 6.1: A graphical description of the model showing (a) the voxel, (b) the voxel
column, and (c) the connections between voxel columns. For each voxel column ij, the
model contains voxel states Xikj7 observations YZ’;, and a class Cj;, class height HE, and
ground height Hfj that interact with neighbors IV;;. The common class heights over the
entire local field are stored in H®.

generated ground height and class height determine the durations of each state before it
transitions to the next state.?

Figure shows a single voxel state Xikj with its associated material properties and
observations. For each voxel state from our generated voxel column from above, we can
generate a set of material properties (e.g. density den) and from each of these material
properties, we can generate a set of observations (e.g. [Y,L ..., Y,M]).

This section has described our model from a generative point of view, including how the
model can generate observation data from model variables. In general, we are interested
in the opposite problem, when we have real sensor data and use a probabilistic inference
algorithm (see section to find the distribution over the class, ground height, and class
height model variables given the data and the model structure.

The following sections describe the three levels of the model in more detail.

6.3.1 Voxel Observation Models

We assume that voxels form the smallest indistinguishable element of space, occupied com-
pletely by one (and only one) voxel state. Each voxel state maintains a distribution over

3We borrow the word duration from the HMM/HSMM literature (often used for time-series modeling)
to describe the number of voxels of a particular substance before a transition to a different substance.

6.3. Terrain Model 67

material properties including density, remission, infrared temperature, and color that de-
scribe the characteristics of that state, but the material inside a single voxel is assumed to
be uniform. For example, the vegetation state may include a range of colors, and therefore
different voxels in vegetation may have different colors, but we assume that the color of the
vegetation within each voxel is uniform.

The measurement vector, ij contains a variable number of noisy measurements of
the material properties. The graphical model in Figure [6.1(a)| illustrates the conditional
independencies between the voxel state Xi’“j, the material property random variables den,
rem, i and col, and the measurements. Conditional on ij, the material properties are
independent, and conditional on the material properties, the measurements are independent.

The voxel material properties are not directly observed, and we are not concerned with
their values beyond what they reveal about the state. Thus material properties constitute
nuisance variables that we remove from the observation models through marginalization,

as described below.

Appearance

The distributions over the voxel appearance properties, including infrared temperature,
laser remission and color, are all inherently multi-modal and are therefore not well described
by a simple parametric distribution. For example, remission values in vegetation are either
high because of the strong reflectivity of chlorophyll, or very low due to small cross-sectional
area. We resort to a mixture of Gaussians to describe the distribution of the material
properties within a state.

Mixture models break up a complex density into a mixture of R simple densities

R

p(z) =) P(i)p(= |) (6.1)

=1

where P(7) represents the mixing coefficients (or mixing priors), and p(z | i) are the mixture
densities. For a Gaussian mixture model (GMM), each of the mixture densities is a Gaussian

. 1
e 1) = e (g alle - il (6.2

2mo}
with mean p; and variance a?. The time complexity of a GMM is proportional to the
number of mixtures R. The parameters of a GMM are generally found using expectation
maximization.

If there is one Gaussian centered at every training point p; = z; and all the mixtures
have the same prior P(i) = 1/R and the same variance 0? = o7, then GMM becomes
kernel density estimation (KDE) with a Gaussian kernel. KDE only has one parameter,
the bandwidth O'g, and adding new training data is trivial, but its runtime is proportional
to the size of its training data set, which makes it impractical for this problem because of
our large training sets.

We develop the marginal distribution for the remission values, but the infrared and color
data are determined analogously. The distribution of a material property such as remission

68 Chapter 6. Learning a Terrain Model with Spatial Dependencies

rem for a given state x is modeled with a GMM

P(i)p(rem | ij = 1)

I
M=

p(rem | Xz-kj =)
1

.
Il

P(i)

1 27ral-2

I
M=

1 2
exp —ﬁﬂrem — remg||

%

.
I

where each mixture has mean rem; and variance 0?. Conditioned on the true remission

of the voxel rem, the M measurements ¥, are independent and assumed Gaussian with

measurement variance 05

PYiem | Tem)

P(Yrem | rem

1

]‘ 2
exp (—2 I ——)
14 /2%05 20y

As described above, the true remission of the voxel rem is unimportant except for what it
reveals about the state, so we integrate it out to get the distribution for the measurements

M
11
‘3;
-1l

in terms of the state

P(Yrem | Xikj =z)= /p(ymm, rem | ij =x)d(rem)
(6.5)

= /p(y,«em | rem)p(rem | Xl-kj = x)d(rem)

Plugging equations [6.3] and [6.4] into equation [6.5] and carrying out the integration, we get a
mixture of Gaussians as a function of the mean of the measurements 4.,,, with variances
based on the number of data points M, the measurement model variance o2, and the

y?
individual mixture variances o2
M R
P(Yrem | Xikj =)= / Hp(y?em | rem) ZP(i)p(rem | rem;) d(rem)
g=1 i=1

R M

=3 / Tt | remptren | ren) e ©6)

R

= Z P(z) ! exp —;z(grem - remi)Q
2(af +5)

; 2 | 9 of + 3¢
=1 2m (o7 + 37 b T M

Equation [6.6] shows that the marginal appearance distributions become more broad
when there are few data points (M is small), reflecting the increased uncertainty in the
material property and hence the state. Figures show this effect for a set of remission
training data from ground and wegetation classes. The obstacle class is uniform over the

6.3. Terrain Model 69

10¢
—— Ground
8t Vegetation
2 - - Obstacle
= 6f
3
e 41
~
2.
0 . - . ,
0 0.2 0.4 0.6 0.8 1

Normalized laser remission

Figure 6.2: Laser remission training data

— Ground
8 Vegetation
> - - Obstacle
= 6
i)
8
£
2-
0 . " " ,
0 0.4 0.6 0.8 1

Normalized laser remission

Figure 6.3: GMM remission observation model for an infinite number of measurements

101
— Ground
Vegetation

= - - Obstacle
z

<

=}

e

~

0.4 0.6 0.8 1

Normalized laser remission

Figure 6.4: GMM remission observation model for 40 measurements

101
—— Ground
8 Vegetation

= - = Obstacle
E

<

=]

e

~

0 0.2 0.6 0.8 1

Normalized laser remission

Figure 6.5: GMM remission observation model for 1 measurement

70 Chapter 6. Learning a Terrain Model with Spatial Dependencies

appearance data, which reflects our broad uncertainty about the characteristics of unknown
obstacles. Figure shows the raw data used for training the GMM observation models.
For each class, a GMM with 10 mixtures was trained on this data using 100 steps of E-M.
Figure [6.3| shows the observation model density that would be used if the voxel mean had
been found using an infinite number of measurements. This density very closely matches
the training data. Figure shows the density if the voxel mean had been found with 40
measurements and displays some broadening. Figure [6.5|shows the large uncertainty in the
observation models if the voxel only has a single measurement.

The use of the voxel material property variable (i.e. rem in Figure and the above
equations) that is then marginalized out is important. Without it, continued measurements
of the same value for a given voxel would continually increase the probability of that voxel
being a specific state. This is not correct, because continued measurements of the same
value only make the system more certain about the actual material property rem, not the
state x. Marginalizing the material property rem out, we get the desired behavior shown in
Figures where the densities converge to p(rem | x) as more measurements are used.

Density

Voxel density values range from empty space (den = 0) to completely solid (den = 1).
Analogously to the GMM models used for voxel appearance properties, the distribution of
density values for a given state can be well modeled using a beta distribution B(a,, b,)
which operates in the range [0,1] and has parameters a, and b, that together specify its
mean and variance.

The measurements of density Y! are binary (ladar hit or pass-through), so we use a
binomial distribution to describe the number of hits M = 2711\[:1 Y., out of N total rays
for a given voxel density property den. As above, we integrate over the nuisance parameter
den, and we recover the beta-binomial distribution as the marginal likelihood observation

model.
P(M =m| ij =z) = /P(m | den)p(den | Xl-kj = z)d(den)

[N\ B(az + M,b, + N — M)
\M B(ag,bs)

This model makes the assumption that a voxel with density den generates ladar hits
that follow a binomial distribution (the outcome of repeated flips of a biased coin with
P(heads) = P(hit) = den). However, since a given state = has a range of possible densities,
which we model with a beta distribution, the distribution over hits M for a given state x
becomes a beta-binomial, which is more broad than a binomial for low amounts of data IV,
but converges to a binomial as N becomes large.

(6.7)

Free-space

The free-space state does not possess any meaningful material properties beyond density
den. Ladar hits occurring in free-space are generally the result of noise so we model the
non-density material properties as matching the material properties of the states in contact
with free-space. For example, the voxel above a ground state voxel may contain many pass-
throughs with a single hit due to noise that has an appearance that matches the ground

6.3. Terrain Model 71

state. If we modeled the appearance of free-space as uniform, then the strong match in
appearance data with the ground state may overwhelm the density information and prevent
the voxel from correctly being classified as free-space. By setting the appearance properties
of free-space to match the state it is in contact with (ground in this example), the transition
to free-space is decided solely on density information, which is appropriate since the free-
space state does not possess any meaningful material properties beyond density.

Obstacles

Although we expect obstacles to generally have a fairly high density den, we cannot hope to
build an accurate observation model for the appearance of each of the innumerable obstacles
one might encounter in outdoor environments, so we simply use a single obstacle state with
a corresponding uniform distribution over the observable range of material appearance
properties (see Figure . We rely on accurately modeling the features of the trained
states to detect obstacles as a default option when none of the other states are consistent.
This is a common approach in anomaly detection, and has been used for detecting obstacles
in an agricultural domain [Ollis and Stentz, 1997].

6.3.2 Vertical Column Structure

As discussed in section [6.1} when moving from lower to higher voxels within a column, we
expect to move from ground to vegetation, or perhaps ground to obstacle, and eventually
to free-space. We never expect free-space to be found below ground, nor do we expect
vegetation to be suspended above free-space.

This type of structure is naturally imposed by introducing a Markov dependency be-
tween voxel states that restricts vertical transitions, thus defining a hidden Markov model
within each voxel column. However, the duration of states such as ground and vegetation are
not well modeled as states in a Markov chain which would induce a geometric distribution
on the duration of states. We resort instead to a hidden semi-Markov model (HSMM) (see
section over voxel states, which explicitly represents a state duration (or height dis-
tribution) over voxels for each state value. These distributions over durations are provided
from the neighborhood structure, as described in section [6.3.3

As shown in ﬁgure we associate a single HSMM chain structure with each column
class Cj;, which makes the resulting column model a mixture of HSMMs. The durations of
the ground and class states describe the height of those terrain elements and are given by
Higj and Hj.

6.3.3 Horizontal Neighborhood Structure

The HSMM column models capture the vertical structure between the terrain elements or
states, but there are also significant horizontal dependencies between neighboring columns,
as discussed in section As shown in Figure we model these dependencies using
two distinct but interacting Markov random fields (MRF's) for class Cj; and ground height
H quj, each dependent on the values of their respective neighbors, and a latent variable for the
common class height H¢ across all columns. These variables interact through the HSMM
column models by imposing a prior on the state durations associated with H;; and Hfj and

imposing a prior over HSMM class models Cj;.

72 Chapter 6. Learning a Terrain Model with Spatial Dependencies

The neighborhood dependency of C;; reflects the prior assumption that class identities
are positively correlated with their neighbors so voxel columns tend to cluster in contiguous
groups of the same class. We express this preference using the conditional MRF distribution

(see section [5.2.4))

P(Cij =c| Cyy;) exp(—)\c Z (c# cst)> (6.8)
{S,t}GNZ‘j

where N;; is the set of neighboring indices and Cly;; is the set of classes in the neighborhood
of the 7jth voxel column.

Ground height varies smoothly from one patch of ground to the next, so we expect that
Hfj will be tightly correlated with nearby values. We express this belief using a Gaussian
Markov random field (see section

P(H} =h | HY,) exp(—% (h - ’Nl‘ 3 hgt)2> (6.9)
G Y {s,t}eN;;

where |N;;| is the size of the neighborhood.

We expect that vegetation of the same class ¢ has a similar height H¢ with some variation
across the local field. This assumption may not be valid for obstacles, so we only apply it
to vegetation classes. Given the common height of the vegetation in this area H¢, we model
the expected variation with a Gaussian truncated by the interval of possible class heights

Iipe

fa)
min? “max

C C 1 Cc
P(HG = h | HY) o< I, s, exp (=5 (h = 1)) (6.10)
Hece

6.4 Inference

The interacting Markov random fields of this model capture important structure, but these
dependencies prevent analytic determination of the posterior distribution P(C, H9, H¢ | Y).
The set of HSMMs that describe the data in each column of voxels can efficiently produce
distributions over the state durations, which makes it easy to sample from the conditional
distribution

P(Cjj, HY

C

oo HY,» H) (6.11)
so we use Gibbs sampling (see section for approximate inference over the MRF's.
Algorithm [I] gives the application of Gibbs sampling to our model. The HSMM column
models require a distribution over class heights which comes from the common class height
latent variable H€, as shown in Figure and described in section m Samples of
the common class height are produced from its conditional distribution given the current

column class height samples hf;

P(HC:h|Hij[J)o<exp<2U%;}Dc(h—;c Z hfj>2> (6.12)

ijEIJ,Cij:C

where D¢ is the number of columns with class c.

6.4. Inference 73

Algorithm 1 Gibbs sampling for inference in the terrain model

Sample common class heights h¢ from P(H€ | Hieq ;) using all the class height samples
of the same class across the field of voxel columns
for all MRF voxel columns ij do
Find ground and class priors from neighbors:
P(HY, | 1Y,)
P (CU | CNij)
for all Classes ¢ do
Find class height prior from common class height of same class:
P(Hj | H)
Use class HSMM to find probability of the data and distributions over the ground
and class height:
P(Yyj | Cij = ¢, Hy, , HY)
P(ny | Cij = C, Y;‘j, ng\fij’ HC)
end fo(fllcj Gy = C’Yij’HJgVij’Hc)
Compute class distribution:
P(Cij | Y, Cn, HY, HE)
o P(Yy; | Ciyj, Hy, HO)P(Cij | Cn)
Sample Cij from P(CZJ | Yij7 CNij y H}%ij,HC)
Sample hf; from P(H}, | C;j = cij,}/ij,H]g\,ij,Hc)
Sample hfj from P(HZC] | Cij = Cij, Y;j, H]g\fij7 HC)
end for

Once the common class heights across the local field H¢ have been sampled, each voxel
column is sampled. The first step of the sampling procedure is to find the priors over class
Cjj, class height H}; and ground height Hfj from the neighbors, as given in equations
and W and the common class heights H¢ as given in equation The priors on H;
and Hi are then incorporated into the HSMM model as priors over state durations and
are shown in the subsequent equations as P(Hf; = h | H®) for the class state z = ¢ or
P(H} =h| ng\,ij) for the ground state x = g.

Once the prior distributions are found, the class HSMM structures are used to find the
probability of the data and the state duration probabilities for each class. HSMMs use a
variant of the standard forward-backward dynamic programming solution used for inference
in regular HMMs (see section [5.1.4). As shown in figure an HSMM maintains
durations (corresponding to height in our case) so that a single state is active over a number
of spatial steps up the chain. This formalism is very natural for finding ground height
or class height because the neighborhood information can be included as a prior on the
corresponding state duration.

The forward-backward computations are still performed over the individual spatial steps
Xikj as in an HMM, but an HSMM must solve for the duration of each state, so in addition to
summing over possible state transitions z’ like in an HMM, we also sum over possible state
durations h. Equations and give the HSMM forward and backward probabilities

()zi-‘/’]~7C and fjc for spatial step k of the class ¢ chain in MRF voxel column ij. We take

74 Chapter 6. Learning a Terrain Model with Spatial Dependencies

advantage of the observation independencies and the deterministic transitions of our chain
structures to simplify the following equations and reduce the computational complexity.
We use the notation 2~ and 2™ to refer to the previous and next states in the chain of the
current class. See section for more details (equations and [5.16).

13,C

k k—h k 1k
ZZ (Xj; =2, Xi; " =o', Hj; = h, Y} |CijaHgij,HC)
)

ok (x) = P(state = ends at k, Yl}k | Cij = c, H%ij,HC)

k
:Z H P(Y;’;‘.’L’) (_h’H]%f’HC) 'ch(x_)
h k'=k—h+1
r(x) = P(Y»’?H:K | state x ends at k, Cy; = ¢, HY,, , H)
— Z (YkJrl K’Xikj:m7Xikj+h o Hw —h CU,HQ Hc)
' h (6.14)
k+h
/ +
= I P 1ah)PHG =h| HY, HO)BE ()
b k'=k+1

Since we know by assumption that the chain must end in the final state z = free-space,
the probability of the data for class c is the final value of « in that state.

ij,c

P(Y;; | Cij = c, Hgij,Hc) = o (z = free-space) (6.15)

As described in Algorithm [1} this is combined with the class prior P(C;; | Cl;;) to find the
distribution over classes, which is used to sample a new class.

Finding the distribution over state durations involves combining « and 3. As above,
equation takes advantage of the deterministic transitions of the chain structures to
reduce computation.

(iic(h) = P(state x has duration h | Yi;, Cij = c, Hﬁ,ij, H®)

=Y P(X}=a X" =12 |V, Cij, HY,,,, H)
k (6.16)

k
Soo I PO |wyp(Hs = hlHE,, HO)ak M) ()
k k'=k—h+1

We know that in each chain, every state transition must occur after some duration, so we
can normalize by >, f}c(h) to get the posterior on ground and class height conditional on
the neighbors. Samples are then drawn from these distributions.

ij,C

P(Hjj=h|Cyj =c, Yy, HY, , H) = L=state e ()

P(HY = h| Cyj = ¢, Yy, HY HE) = C5297"" (h)
X ’ o (6.17)

The time complexity of HSMM calculations is greater than an HMM because of the
sum over possible durations, but the observation likelihood products can be pre-computed

6.5. Learning 75

and the state durations to search over can be constrained based on the priors to reduce the
complexity to O(numVozels x numStates * maxDuration) for a single chain.

Although it is typically difficult to show that Gibbs sampling has converged, we have
found empirically that the model finds a good estimate quickly, allowing for real-time exe-
cution.

6.5 Learning

The model described in section [6.3] incorporates prior knowledge about the structure of
the environment, but the specific model parameters must be learned from training data.
These parameters include the sensor observation models for each state and the neighbor-
hood interactions for class, class height, and ground height. The generative nature of our
model allows us to decouple the learning problems, and train each of these observation and
neighborhood interaction models individually, thus greatly simplifying the learning task.

6.5.1 Learning the Observation Models

Collecting labeled training data is often expensive, especially in outdoor environments where
there can be high variation in sensor readings so that a large training set is needed. We
use an approach based on the ideas in chapters [3] and [4] to collect large quantities of labeled
training data to automatically train our observation models. Specifically, we drive through
representative terrain of a single class such as vegetation and store the sensor measurements
from the voxels of columns that we drive over as training examples for that class. This
process is then repeated for other classes such as ground. Unlike the method presented in
chapter [4] which directly trains on the height of different types of vegetation, this method
only trains on the various material properties of vegetation voxels, allowing the system to
remain general across vegetation heights.

Each labeled voxel collected by driving through representative terrain is used as a train-
ing example for the observation models in equations and For appearance data such
as remission, infrared and color, the mean values from each voxel are used to train the GMM
observation models (i.e. rem;, o2, P(i) in equation and the variance of measurements
within the voxels is used as the GMM measurement model variance (0’5 in equation .

Hit and pass-through data from the labeled training voxels are used to find the maximum
likelihood parameters of the beta-binomial density model (a, and b, in equation for
each class state z using a Newton-Raphson method[Smith, 1983]. This handles class states
like ground and wvegetation, but the density of obstacle and free-space states must also be
trained. The free-space density can be trained using data that includes insects or dust that
occasionally returns a ladar point, or it can just be set manually to strongly favor empty
space. Similarly, the obstacle density can be trained using hit and pass-through data from
representative obstacles, or it can be set manually to favor dense objects.

6.5.2 Learning the Neighborhood Models

The priors given in equations and describe how class and ground height depend
on their neighbors, and the prior in equation [6.10] describes how column class heights are
related to the common class height. Each of these priors contains a parameter that gives the

76 Chapter 6. Learning a Terrain Model with Spatial Dependencies

strength of the prior, and describes how much classes tend to clump together, how smooth
the ground is, and how little class heights vary. As above, we train these parameters by
driving over representative terrain.

As we drive over an area, we record the ground heights measured by the location of our
wheels. We use these height sequences to find the standard deviation og of typical ground
height variation between voxel columns, which gives us the maximum likelihood estimate
of our ground neighborhood prior. As described in section the maximum likelihood
estimate for a Gaussian MRF is simply the standard deviation of the pairwise differences.

Similarly, as we drive through vegetation, we get an approximate vegetation height
measurement by taking the highest ladar hit and subtracting the known ground height
(from the wheel locations). Since we assume that vegetation heights are independent given
the common vegetation height in the area, we can find the class prior standard deviation
ope directly from this sequence of class heights.

The class interaction prior A¢ gives the probability that a class transitions to a different
class. This could be estimated directly using pseudo-likelihood methods (see section
with class-labeled data over a large area that includes many class transitions, but unlike
the labeled data for the observation models or the ground and class height interactions, this
type of training data is difficult to collect. However, changing the class interaction prior
affects the system output in an intuitive way by controlling how much classes tend to clump
together, so this parameter can be set manually.

6.6 Run Time

Performing inference in this model is intensive computationally because of the repeated
calculations necessary to sample from the model. Our system runs a loop that updates
the local terrain map at approximately 1Hz. Within this loop, the system computes the
observation likelihood products, calculates 20 samples from each column in the terrain map,
and updates the mean ground height, class height, and most likely class for each column.

At a vehicle speed of 1m/s, this results in approximately 200 samples for a terrain patch
before the vehicle reaches it. Although sampling convergence is difficult to prove, the system
generally finds the solution quite rapidly in our experiments, allowing us to run the system
in real time.

6.7 Simulation Results

This chapter has presented a terrain model that includes spatial correlations to better
handle missing and ambiguous data in dense non-penetrable vegetation without needing to
explicitly train on the vegetation height. This section shows simulation results that verify
these properties.

Figure shows simulated data of a transition from ground to tall vegetation. Imagine
the vehicle is approaching this from the left, so its sensors get measurements of the ground,
the front of the vegetation, and the top of the vegetation, but since the vegetation is dense
there are no range measurements of the ground surface under the vegetation. The dashed
line gives the true ground height, showing that the ground under the vegetation is flat
and then angles up a hill. The vegetation has some columns with missing data, and some

6.7. Simulation Results 77

voxels in the vegetation match the appearance of ground, as shown by their dark blue color.
Although there is no data under the ground or vegetation surfaces, the voxels above the
ground and vegetation are full of pass-throughs. The ground and vegetation appearance
models were set to match the simulated appearance data so we could study the effects of
the spatial correlations in the model.

Since this example assumes the vehicle is approaching from the left, the system was
initialized with the “ground” class, a ground height of 2, and a class height of 0 (the
“ground” class has no height). The sampling inference procedure given in algorithm [1| was
then run for 100 iterations (each iteration produces samples from every column) which took
0.5 seconds. The final 50 samples from each column were used to find the most common
class, the mean ground height, and the mean class height (although we allowed 50 iterations
of “burn in” time to let the sampling procedure converge, the system actually converged
after approximately 5 iterations).

Figure shows the ground height estimates and Figure gives the class and class
height estimates. These values represent the most likely explanation of the data given the
prior knowledge encapsulated in the model. Although the system was never trained on the
height of the vegetation, it was able to recover the vegetation height and use this to estimate
the ground height including the hill. The visible ground surface along with the ground
smoothness assumption constrains where the ground can be at the transition to vegetation.
Therefore, the vegetation height at the transition is very likely and is propagated through
the rest of the model because of the assumption of similar vegetation height.

The model structure also allowed the system to handle missing and ambiguous data.
The class prior makes it likely that the missing data areas are vegetation, and the ground
prior makes it likely that the ground is smooth in these areas. This interpretation is
likely under the model and consistent with the data. The ambiguous data patches in the
vegetation have appearance properties similar to ground, but the ground smoothness prior
makes it extremely unlikely for the ground to be that high, so the model produces vegetation
estimates in those areas. The structure in the model prior allowed the system to reject this
unlikely data.

The class height estimates in Figure are not completely uniform. There is a crease
where the hill starts because the model ground prior enforces a smooth transition from the
flat region to the hill in Figure [6.7] whereas the simulated data has an abrupt angle change.
The class heights at the far right become slightly larger because of the conflict between
the ground prior that wants a smooth flat ground and the class height prior that wants a
uniform vegetation height.

The class height predictions are slightly lower in the missing data areas because of
asymmetric data evidence. In the absence of any hits, the class prior would give the missing
data areas a symmetric class height distribution around the true class height. However, the
large number of pass-throughs above the missing data areas produces a strong constraint
that cuts off the top of the class height prior distribution. Therefore the class height
samples in areas with missing data are biased low. Since there are no hits in that patch, it
is reasonable to expect that the vegetation height is lower in this area.

A system like the one presented in chapter [] that assumes that terrain patches are
independent would do poorly in this example. First, since the vegetation is dense and the
ground is hidden, it would need to know how tall the vegetation is. The online learning
system in chapter [4 could adjust to this height once it drove into it and could train on

78 Chapter 6. Learning a Terrain Model with Spatial Dependencies

[vegetation
. Ground

Figure 6.6: Simulated sensor data, showing transition from ground to tall vegetation with
missing and ambiguous data. The dashed line gives the true ground height

|:| Vegetation
. Ground
154

104

54

0
20

Figure 6.7: Ground height

= Vegetation
. Ground

Figure 6.8: Class and class height

6.8. Results 79

it, but it does not have the capability to use the weakly-labeled data at the ground to
vegetation transition like this method. Also, a system that makes independent estimates
would produce incorrect high ground estimates where there is ambiguous data, because it
doesn’t use the neighborhood to filter these out.

6.8 Results

We have tested this model in a nearby working farm and an undeveloped area with tall
weeds. In each case, we train the system by driving it through representative terrain
classes. The following examples show the benefits of including spatial correlations in areas
with dense non-penetrable vegetation. We also show that the system can find an obstacle
in vegetation and what happens when the ground smoothness assumption is broken.

The Gibbs sampling inference procedure described in section produces samples from
the posterior distributions on class, ground height, and class height. The results below
use the most commonly sampled class and the mean of the ground height and class height

samples (see section [5.2.2]).

6.8.1 Comparison Algorithms

Current approaches that filter out vegetation from the ground surface generally rely on
the deepest range penetration, but for dense non-penetrable vegetation, this performs very
poorly since there are no range points that reach the ground. Therefore, in addition to
comparing our model to the lowest hit or pass-through, we also compare it to an approach
that adjusts the lowest point based on independent column classifications using the same
sensor models but without any neighborhood interaction. We use the average height of each
class from the training data for the offset. Additionally, chapter [7] presents a comparison
between the model described in this chapter and the independent online learning approach
described in chapter [

6.8.2 Transition to Dense Vegetation

Figure shows a transition from low grass to tall weeds that is similar to the simulation
example in section [6.7] We trained the system in similar low green grass and tall yellow
weeds in a nearby area. This training procedure only recovers the voxel observation models
and the neighborhood correlation constants, not an explicit vegetation height.

The colors in Figure [6.10] show the independent column classifications, and the heights
in the figure show the lowest hit or pass for each column. This shows that the vegetation
is dense and no range measurements penetrate beyond the first row of weeds.

Figures and show the system output, including ground heights, class heights,
and class labels. The figures show that the class predictions are more continuous instead
of the noisy class labels in Figure More importantly, the model is able to infer the
vegetation height from the transition and correctly predict the hidden ground surface.

Figures and [6.14] compare the model ground height predictions with the lowest
range point, the lowest point adjusted based on its independent classification, and the true
height found when the vehicle drives into the tall vegetation. These figures show that
the lowest point is a poor indicator of ground height in dense vegetation, but that the

80 Chapter 6. Learning a Terrain Model with Spatial Dependencies

Figure 6.9: View from tractor of transi- Figure 6.10: Lowest hit or pass with in-
tion from low grass to tall weeds dependent column classifications

= —

e

e e e
e

Figure 6.11: Ground height predictions Figure 6.12: Class height predictions
2F| —=—Lowest hit or pass 2F| —=—Lowest hit or pass
—— Lowest w/class adj —— Lowest w/class adj
1.5} = Spatial model 1.5} —=— Spatial model
| | ——True height || ——True height

Height (m)
IS)
N
Height (m)

0 2 4 6 8 10 12 0 2 4 6 8 10
Distance along the path (m) Distance along the path (m)
Figure 6.13: Ground height prediction Figure 6.14: Ground height prediction

comparison for left wheel comparison for right wheel

6.8. Results 81

adjusted version does well when it is correctly classified. However, classifying each voxel
columns independently without consideration of its neighborhood results in a number of
misclassifications which significantly degrade the ground height estimates.

The spatial model also misclassifies some of the voxel columns at the transition because
the side of the tall weeds can have an appearance more similar to short grass than the yellow
tops of the tall weeds that the system was trained on. However, because of the ground
smoothing prior, the effect of these misclassifications is small. The model ground height
predictions show a small error at 5m in Figure [6.13] which corresponds to the misclassified
columns in the center of Figure but this error would not prevent successful navigation.

6.8.3 White Shed

Figure [6.15 shows the view from the tractor as it approaches a white shed. This is a large
obstacle that could be reliably detected in a variety of ways, but it will serve as a good
example of how the various pieces of our model interact to produce the correct result. Figure
shows the output of our model including the class labels: obstacle (red), vegetation
(green), ground (gray), and the ground height for drivable areas. Obstacle columns are
shown at their class height. The model produces a reasonable classification of the scene
and a smooth ground estimate that would work well for vehicle navigation. It classifies the
shed as an obstacle and correctly captures the hill sloping down to the right despite the
presence of sparse vegetation.

This example is interesting because on a voxel basis the ground class is much more likely
than the broad uniform obstacle class for the voxels from the shed. However, the MRF and
HSMM spatial constraints imposed on the ground surface make it extremely unlikely that
the ground height would have a tall step discontinuity at the shed wall. Since the density
and appearance data are not well described by the vegetation class, the shed is correctly
classified as an obstacle.

Figure [6.17] shows the output of the system when the neighborhood interactions are
ignored and the columns are assumed to be independent. Without neighborhood informa-
tion, classification is based solely on the data likelihood for each column HSMM model.
Lacking the smooth ground prior, the wall is classified as a collection of tall columns of
ground. A vision system that ignores 3D structure and only makes a classification based on
the observation models we use would produce a similar result. Figure [6.17] also shows that
without the ground and class priors, the ground height estimates and classification labels
are generally more noisy.

6.8.4 Person in Vegetation

Figure shows the view from the tractor in a challenging scene: a camouflaged person
in tall vegetation with a small dirt mound to the right. Figure shows that both the
person and the dirt mound have a high temperature. A simple obstacle detection system
that performed a threshold on temperature may classify both of these objects as obstacles.
We show that the structure of our model allows the system to disambiguate these two
objects.

We trained the model on ground, low grass, and tall weeds as in section [6.8:2] Figure
6.20] gives the ground heights and classification results. The model correctly classified the

82 Chapter 6. Learning a Terrain Model with Spatial Dependencies

Figure 6.15: View from the tractor of a white shed

b
i
um
sl
gl
Gy
‘\\

T
o
i
o
e
i
!

o

N

=

i\
W
\\§‘\
o
i
0
i
:&.

S

““\\\\\

b
e
W
a

=
=

=i
e

A
i
\
.
3

0
i

e
\\8\\\

!
R
3
\
S

g\
I\
o
-
s

7
o)
T
5
.
25

T
T
N

T
o

S0
N
0

L
Lk
AL
0

s
n

o

S

T

88
5“
o
55
S

S

N

Figure 6.16: System output, including Figure 6.17: System output with neigh-
ground heights and classification borhood interactions turned off, showing
incorrect classification of the shed

person and the dirt mound as well as the two types of vegetation. The area in the shadow
of the vegetation is classified as ground. Although that area is actually low grass, ground is
a reasonable guess since the system has no data in those columns except for pass-throughs
high above the ground height.

The use of both the known ground height under the vehicle and the model structure
allowed the model to produce reasonable estimates of the ground height even in areas
where the ground is hidden. In addition to providing a smoothing prior, neighborhood
interactions allow information to propagate. Fixing the heights under the wheels affects
the ground estimates in the surrounding area. Columns with little or no data can still
produce useful estimates using their neighborhood. Class height similarity helps infer the
ground height in areas where the ground is not directly observable. Knowing the ground
height allowed the model to explain the dirt mound as a rise in the ground. Knowing the
ground height similarly allowed the model to reject the person being classified as ground,
so the person was classified as an obstacle.

Figure [6.21] shows the predicted class heights, giving the tops of the vegetation. As in
section [6.8.2] the sides of the tall weeds are classified as low grass, which causes a small rise

83

6.8. Results

2 4 6

Distance in front of the vehicle (m)

—— Lowest hit with class—based offsef]
0

- - - Lowest hit or pass

—True height
—— Model output

2

2

Figure 6.21: Class height predictions

,.__.-_,——I—_.\—.,/
TS
i—ﬂﬁ-&i—m—‘

[CUREHIES]

Figure 6.19: Infrared data showing high
temperature of person and dirt mound

X

, e

e
i ‘ b‘

,—___—————/—-—

.——
e

Figure 6.20: Ground height predictions

Figure 6.18: View from tractor of tall
vegetation, person, and small dirt mound

Figure 6.23: Ground height prediction

comparison

Figure 6.22: Lowest point with indepen-

dent classifications

84 Chapter 6. Learning a Terrain Model with Spatial Dependencies

in the ground heights in Figure [6.20]

Figure shows the lowest point and the class estimates when no neighborhood in-
formation is used. The lowest point does not penetrate the dense vegetation so it gives
poor estimates of the ground height. Both the dirt mound and the person are classified
as a mixture of dirt and obstacle columns. Also the vegetation class predictions without
neighborhood information are noisy, which causes problems when the class is used to adjust
the lowest point as in Figure [6.23]

Figure [6.23] shows a plot of the quality of the ground height estimates from Figure [6.20
After computing estimates of the ground height using our model, we drove through the
scene toward the area between the person and the dirt mound, and made measurements of
the ground height using our wheel locations. This trajectory is marked as “True height”
in Figure [6.23] and offers a comparison for the estimates produced by the model and those
using the lowest hit or pass-through in each column, or the lowest hit adjusted by the
average trained height of the column ML class. The class adjustment strategy works well
when the classifications are correct, but the noise in the classifications creates noise in the
ground height estimates. The model ground estimates are fairly smooth and stay within
approximately 20cm of the true value.

6.8.5 Vegetation on a Slope

The transition to vegetation result in section and the person in vegetation result in
section both showed improved ground height predictions. However, the ground was
generally flat in both of those examples so a system that simply classified all vegetation
as safe could have succeeded without correctly estimating the ground surface (although
detecting positive obstacles such as a person is more difficult without the ground plane).
This section shows an example where treating vegetation as drivable could lead to dangerous
behavior but finding the supporting ground surface enables the vehicle to stay safe.

Figure shows the view from the tractor as it is driving along a path on a steep
14-degree side slope with dense vegetation at the bottom of the hill. The vegetation at
the bottom covers and hides the supporting ground surface underneath. Figure [6.25] shows
a view from in front of the tractor of the range point data, as well as an approximate
indication of the true ground height. The path that the tractor is driving on has a high
side slope, and the ground becomes even steeper on the lower part of the hill under the
vegetation, which could result in a roll-over hazard. The dense vegetation prevents laser
measurements of the ground, so a system that uses the lowest point for the ground height
would treat the top of the vegetation as the supporting surface, as shown in Figure [6.2
This would make that part of the hill appear to be fairly flat and traversable, when it
actually contains a steep side slope and could represent a roll-over hazard.

Figure [6.26] shows the spatial model ground height estimates. This approach correctly
infers a ground surface below the vegetation, and the resulting ground surface predicts
a high slope in that area that could be used with a vehicle model to check for roll-over
conditions.

The model assumptions of smooth ground and similar vegetation height enable the
system to infer the ground surface below the vegetation, even though the system was never
trained on the height of the vegetation. As in the simulation example in section [6.7] the
transition from ground to vegetation at the edge of the path allows the system to infer a

6.8. Results

85

Figure 6.24: View from the tractor on
a steep side slope with vegetation at the
bottom of the hill on the left

I '

Figure 6.26: Spatial model ground height
predictions and classification

Figure 6.25: Data from the front, show-
ing the path and vegetation on the hill
with the approximate true ground height

Figure 6.27: Lowest hit or pass-through
and independent classification (the diag-
onal pattern in the classifications is a ren-
dering artifact)

vegetation height which then propagates through the spatial correlations in the model to
drop the ground surface below the top of the vegetation that is observable. The system
also tries to produce smooth ground estimates between the observed ground height on the
path near the tractor and the data from the bottom of the slope (not visible in the figures).
These constraints combine to produce an accurate ground estimate in this difficult example.

86 Chapter 6. Learning a Terrain Model with Spatial Dependencies

Figure 6.28: Tractor approaching ledge Figure 6.29: Ledge with vegetation
hazard from the top (vegetation was re- present during testing
cently mowed)

6.8.6 Ledge Step Hazard

The previous sections looked at examples where the model assumptions of smooth ground,
class continuity, and similar vegetation height were generally correct. This section explores
what happens when model assumptions are broken.

Our main test area did not have any areas with non-smooth ground so a wooden ledge
was constructed. Figure shows the tractor approaching this ledge from the top. In
that picture, the area had been recently mowed, but the data for this experiment was taken
when the ledge was more overgrown with vegetation, as shown in Figure [6.29]

The system was trained as in section [6.8.2] on ground and two types of vegetation.
Results are given below for the positive obstacle case when the vehicle approaches the ledge
from the bottom and the negative obstacle case when the vehicle approaches the ledge from
the top.

Ledge from the Bottom

Figure [6.30] shows the view from the tractor as it approaches the ledge from the bottom,
where it is directly observable. Figure [6.31] gives the predicted class heights, showing the
top of the vegetation. The ledge has an appearance that matches the ground class, so there
is a row of columns classified as ground, but the ground prior makes the taller portions of
the ledge unlikely to be ground and their appearance does not match any other class, so
the ledge is correctly classified as an obstacle.

Figure [6.32] gives the model ground height estimates. The ground estimates beyond the
ledge are significantly lower than the true ground height. The model has explained the
higher data points beyond the ledge with dense medium height vegetation instead of higher
ground and short vegetation.

Figures and show why the model produces this estimate. The vehicle is
positioned in vegetation of the same class as the vegetation beyond the ledge. However,
the vegetation that the vehicle is on top of is taller than the vegetation beyond the ledge.

6.8. Results 87

Figure 6.30: Ledge from the bottom

Figure 6.31: Class height Figure 6.32: Ground height

Figure 6.33: Class height (side view) Figure 6.34: Ground height (side view)

88 Chapter 6. Learning a Terrain Model with Spatial Dependencies

Figure [6.33] shows that the system uses the assumption of similar vegetation height to
propagate the vegetation height under the vehicle to the area beyond the ledge. The ground
rises accordingly but not to the actual ground height.

Although the ground heights beyond the ledge are incorrect, the system correctly de-
tected the ledge as an obstacle because it is inconsistent with the ground smoothness prior.

Ledge from the Top

Figure shows the view from the tractor as it approaches the ledge hazard from the top.
Detecting negative obstacles such as this is difficult even for a human. Figures and
[6.37] show the colored data points from above and the side. The large area with no data
corresponds to the location of the ledge.

Figure [6.38] shows the system ground height predictions. The ground height is con-
strained under the vehicle and the system makes predictions for the terrain where it has
data. It then smoothly interpolates between the two to produce ground predictions where
there is no hit data (the area above the ledge still contains pass-throughs which give an
upper bound on the location of the ground surface).

When the vehicle approached the ledge from the bottom, the system received large
amounts of data on the ledge that the system was forced to explain. This resulted in the
system maintaining the smooth ground and explaining the data with the obstacle class.
In this example with the vehicle approaching from the top, there is no data on the ledge
for the model to explain, so the model just produces the minimum energy solution that is
consistent with the data, which is a gently sloping surface instead of an abrupt ledge.

Figure [6.39 shows the result using the lowest hit or pass-through and the independent
column classifications. The classifications have more noise and the vegetation to the left
of the tractor’s front wheel is not removed, but the ground heights at the ledge are very
similar to the model predictions in Figure [6.38] This again shows that the data for this
problem does not show the existence of the ledge, which is why negative obstacles like this
are so challenging.

One approach that could help the model deal with situations like this is to include a
“hole” class in addition to the ground, vegetation, and obstacle classes. A hole class would
use an HSMM model that transitioned from the ground state to free-space to free-space,
and the output ground height would be the transition from free-space to free-space (the
“top” of the hole would be at ground level). This would allow the model to interpret
negative obstacles as an area with free-space below the surrounding ground. By including
this general class of obstacle into the model, it may be better able to handle these difficult
cases.

6.9 Summary and Limitations

This chapter has presented a novel model structure that allows multiple Markov random
fields to interact through a hidden semi-Markov model for improved ground height estima-
tion and classification for outdoor navigation. This structure enforces spatial constraints
within a column and between neighboring columns, allowing the model to infer vegetation
height and use this to find the ground height in dense vegetation. The model provides
a natural way of combining different types of sensor data. It can find obstacles without

6.9. Summary and Limitations 89

Figure 6.36: Data from above Figure 6.37: Data from the side

Figure 6.38: Ground height estimates Figure 6.39: Lowest hit or pass-through
and independent classification

90 Chapter 6. Learning a Terrain Model with Spatial Dependencies

needing to explicitly model them or collect obstacle appearance training data. Except for
the class neighborhood prior, the sensor and interaction model parameters can be easily
trained by simply driving through representative areas. The system runs on real data and
we showed that including the neighborhood structure significantly improved the ground
height estimates over an equivalent model without neighborhood interactions. The fast
HSMM calculations and quick convergence of the Gibbs sampling allows the system to be
run in real time for moderate vehicle speeds. Chapter [7] gives a comparison between this
approach and the online independent learning approach given in chapter [4

6.9.1 Limitations and Future Work

Although the model can generally run in real time, there are cases when the Gibbs sampling
procedure mixes slowly. This often happens when there is very little data (for example,
the area behind the vegetation that was classified as ground in Figure . In this case,
all classes are equally probable, but the system will converge to one class in this region
and then the class prior will make it difficult for any single column to change. This is a
classic problem in sampling methods and can be addressed by the Swendsen-Wang sampling
procedure [Swendsen et al., 1992] which extracts groups of like classes and samples a change
to all of them at once instead of sampling each individually.

We would like to try adding new general classes such as the “hole” class described in
section [6.8.6| or an “overhanging obstacle” class to handle tree branches. It would also
be interesting to try to detect when the model is a poor fit for the data to better handle
unforeseen situations.

The system is set up essentially as a batch process, even though data is continually
coming in and the sampling procedure can continue over time. We would like to make it a
true online algorithm like the approach presented in chapter] This is discussed in more
detail along with other future work in chapter

Finally, we would like to look into other approximate inference schemes that might be
less computationally intensive than Gibbs sampling.

Chapter 7

Comparison

This chapter provides a comparison between the two approaches presented in this thesis:
e Independent online learning (Chapter 4))

e Spatial model learning (Chapter @

The approaches will be evaluated in various types of vegetation by comparing their ground
height predictions at different distances in front of the vehicle with the true ground height
found when the vehicle drives over that area.

The test area and training procedures are described below, and then two comparison
experiments are presented. The first test compares the results for the transition to dense
vegetation example that has been described in earlier chapters individually for each ap-
proach. The second test describes a longer experiment with varied vegetation and gives
summary results. These results show that both approaches produce better ground height
estimates than prior work which is based on the deepest range penetration (lowest hit or
pass-through). The results also show that the second approach that includes spatial cor-
relations produces smoother ground estimates with smaller errors than the first approach
that treats terrain patches independently.

7.1 Test Environment and Training

These experiments were performed in an undeveloped field with various types of vegetation,
as shown in Figure[7.1] This area has two predominant types of vegetation: tall yellow weeds
and shorter green grass. Figure shows a transition between these types of vegetation as
well as some sparse white vegetation on the left.

Data collected during a 13 minute drive through part of this area was used as training
data. The independent online learning approach from chapter [4 was simply driven over
this area to train it using features from each column of data (see section . The spatial
model approach from chapter [6] requires separate training for each class, so the training
data was split between the sections in the tall yellow vegetation and everything else (i.e.
miscellaneous vegetation such as the sparse white vegetation in the left of Figure was
all lumped into the “short green grass” class for simplicity). The sections for the different
classes provided labeled voxels for training as well as the spatial correlation parameters for
the model (see section . Both approaches used features based on color, infrared, laser
remission, and range points.

92 Chapter 7. Comparison

Figure 7.1: Test field

7.2 Transition to Dense Vegetation

This section compares the two approaches for a transition from low grass to tall weeds, as
shown in Figures and which has been one of the main motivations for the work in
this thesis. This test case has been described in detail in section [£.4.5] for the first approach
and section for the second approach, so only a brief comparison will be presented here.

Figures and show the ground height predictions produced by each approach for
the area in front of the vehicle, and Figures and [7.7] give a side view of the predictions
and the raw colored range data. Figures [7.8 and compare the predictions for each
approach with the lowest hit or pass-through and the true ground height found by driving
into the tall vegetation.

These results show that both approaches can make predictions of the hidden ground
surface below dense vegetation where there are no range measurements. However, because
the first approach assumes spatial independence and explicitly trains on the vegetation
height, its predictions are noisy and have an offset that could cause a false positive that
would prevent the vehicle from entering the tall weeds. The spatial model encodes ground
smoothness and can infer the vegetation height so it produces accurate and smooth ground
height estimates that would allow the vehicle to enter the tall weeds.

Figure 7.2: Transition to tall weeds Figure 7.3: Color range data

7.2. Transition to Dense Vegetation 93

Figure 7.4: Independent ground predic- Figure 7.5: Spatial model ground predic-
tions tions and class

il HHH H M\\\lm.

Figure 7.6: Side view showing indepen- Figure 7.7: Side view showing spatial
dent ground predictions model ground predictions and class

—&— Lowest hit or pass

ok Independent learning o} [~—TLowest hit or pass
—s— Spatial model Independent learning
—True height —e— Spatial model
7e 1.5 ——True height
z 2
= =
% 2 4 6 8 10 12 =2 2 4 6 8 10
Distance along the path (m) Distance along the path (m)
Figure 7.8: Height prediction comparison Figure 7.9: Height prediction comparison

for left wheel for right wheel

94 Chapter 7. Comparison

357

Highest hit
—— Lowest hit or pass
356F ——True height
355F
E
= 354p
g
b
%353
m
352F
351F M"
350 1 1 1 1
0 50 100 150 200

Distance (m)

Figure 7.10: Profile of comparison test path (note the two axes have very different scales)

7.3 Long Test Set

Figure shows a profile of the test path, along with the lowest and highest hit features
to give some indication of the type of vegetation along the path. The path is gently sloping
with an elevation change of approximately 6m. The lowest point feature shows that the first
70m of the path contains two sections of tall dense non-penetrable vegetation (the transition
example in section occurs at 55m). The remainder of the path has low vegetation with
various tall sparse vegetation and a few small patches of dense vegetation (e.g. 170m).

The following algorithms were tested on this data set:

Lowest hit or pass Deepest penetration of the range sensor

Lowest w/class adjustment Deepest penetration of the range sensor with an adjustment
based on the independent classification of that column and the average trained height
of that class (this algorithm uses the same learned sensor models for classification as
the spatial model approach but with no neighborhood information - see section

Independent online Online learning approach presented in chapter

Independent online with no adaptation Online learning approach presented in chap-
ter] with no online adaptation during testing

Spatial model Spatial model learning approach presented in chapter [6]

Flat predictions Always predicts the ground is flat based on the current vehicle location

We present results for different prediction distances in front of the vehicle in summary
and detailed form. Figures to summarize the results on this test set by giving
the spread of deviations from the true height for various prediction distances in front of
the vehicle. The plots give two sets of error bars. The outer bars give the minimum and
maximum deviation from the true height, and the inner bars give the +2¢ spread. A good

7.3. Long Test Set 95

approach should have a zero mean and a small spread of deviations from the true height
for all distances in front of the vehicle.

Figures[7.17to[7.22] give the same results in a more detailed form. The actual deviations
from truth are given along the entire path for various prediction distances in front of the
vehicle. The following sections describe these results in more detail.

7.3.1 Lowest and Lowest with Class Adjustment

Figure [7.17) shows that one cannot rely on range data penetration in dense vegetation, and
this is also reflected in the large positive offset and wide spread in Figure Using the
lowest range point will cause many false positives and will treat tall weeds as an obstacle.

Figure [7.1§| gives the results for subtracting a trained offset from the lowest point that
is based on an independent column classification using the learned sensor models from
chapter @ When the classification is correct (for example the tall vegetation from 10-40m
for small prediction distances), this technique does fairly well, but without spatial context
the classifications are often wrong which results in noisy and incorrect ground estimates
because the wrong offset is applied to the lowest point. The summary in Figure shows
a mean closer to zero than using the lowest point directly, but an even larger spread than
simply using the lowest range point.

7.3.2 Independent Online Learning: With and Without Adaptation

The results for the independent online learning approaches summarized in Figures and
have zero mean and a fairly small spread but contain a number of large positive errors.
Figures and show that these large errors generally occur in tall vegetation. Since
the independent classifications in Figure have large positive errors in many of the same
locations (e.g. 25m, 70m, 170m), it is likely that these errors are due to ambiguous feature
data that resulted in the wrong vegetation height offset being applied. The independence
assumption also results in noisy estimates that could cause many false positives.

For this test set, adapting online during the test does not seem to provide much ben-
efit. This shows that the training data was sufficient for this task so that adding more
training data during the test was not necessary, and suggests that for these features in this
environment, making independent predictions is likely to have occasional large errors.

7.3.3 Independent Online Learning versus Spatial Model

The results from the second approach that includes spatial correlations and can infer veg-
etation height are summarized in Figure The deviations are zero mean and have a
low spread like the independent online learning approach, but the maximum errors are also
small. Figure shows that the ground height estimates are smooth and would be well
suited for vehicle navigation.

Comparing these results with the results for the first approach that makes predictions
on an independent basis (Figures and shows the benefits of including spatial
structure to help constrain the problem and handle ambiguous data. The ground predictions
from the spatial model are smoother and do not have the tall spikes that can cause false
clearance hazards. This is partly due to the class continuity assumption that filters out

96 Chapter 7. Comparison

isolated misclassifications due to ambiguous data, but even when the classification in the
spatial model approach is consistently wrong such as the incorrect classification of the tall
weeds at 170m, the ground prior acts to keep the ground predictions smoother and the
maximum deviations from the true height significantly smaller than those produced by the
independent online approach.

Both approaches in this thesis use learning to differentiate between areas where sensor
measurements of the ground are available and areas where the ground is hidden. However,
the independent online approach directly applies a learned offset to the lowest sensor mea-
surements based on this differentiation, whereas the spatial model approach relies on spatial
structure and model assumptions to infer the offset from the data. If we apply the spatial
model approach but turn off all neighborhood connections, then the system can only search
for a ground transition using the data in that specific column, which produces estimates
similar to the lowest point results shown in Figure This system could also classify
independent columns based on their sensor data and apply a trained offset based on this
independent classification as was done in Figure but these results are more noisy than
the independent online approach because there is a single offset for each of the discrete
classes instead of the continuous space of offsets used in the first approach. The real power
of the second approach comes from including the spatial constraints in the model.

7.3.4 Spatial Model and Flat Predictions

As a sanity check, we compare the spatial model with a method that always produces
flat predictions based on the vehicle’s current height. This method completely ignores the
sensor data and always claims the world is safe so it would be worthless to use in a real
system, but it provides a good baseline to check how easy this test set is and whether the
spatial model is actually doing something intelligent.

The summary results in Figure for the flat predictions approach show that the
technique works well for short prediction distances but becomes poor as the predictions are
made farther in front of the vehicle. This makes sense since the ground in this test set
(and in general) is fairly smooth so the vehicle’s current height will be a good predictor
of the nearby ground height. Figure shows that for larger prediction distances when
there is a slope, making a flat prediction results in large errors. For example, compare the
area around 200m which is on a downward slope. The spatial model prediction errors in
Figure are near zero whereas the flat predictions errors in Figure become larger
for larger prediction distances. This shows that the spatial model is smoothing the ground
estimates but is also using the data to infer where the ground is even on slopes.

7.3.5 Summary

These results show that both approaches presented in this thesis can produce improved
ground height estimates when compared to a method that relies on range data penetrating
the vegetation (i.e. the lowest hit or pass-through results). These experiments further show
the benefits of including spatial correlations to constrain the problem and better handle
ambiguous sensor data.

7.3. Long Test Set

97

0.5f

Deviation from truth: min, 26, max (m)

LT

0 2

8

Distance in front of the vehicle (m)

Figure 7.11: Lowest hit or pass

1T

|
I
n

Deviation from truth: min, 26, max (m)

a

0 2

4 6
Distance in front of the vehicle (m)

8

Figure 7.13: Independent online (Ch

105}

Deviation from truth: min, 26, max (m)
<)
L
L [
N
I
N
N
I
S

FEERRRREER

|
—_
W

4 6
Distance in front of the vehicle (m)

Figure 7.15: Spatial model (Ch [6)

Deviation from truth: min, 26, max (m)

n

I
in

(=

|
=]
wn

|
n

0 2 4 6 8
Distance in front of the vehicle (m)

Figure 7.12: Lowest w/class adjustment

Deviation from truth: min, 26, max (m)

n

o
in

(=}

|
=
[

|
—_

|
—_
)]

LT l\

0 2 4 6 8
Distance in front of the vehicle (m)

Figure 7.14: Independent online (Ch
with no adaptation

Deviation from truth: min, 26, max (m)

n

—_

o
in

(=}

|
=
wn

|
—_

|
W

0 2 4 6 8
Distance in front of the vehicle (m)

Figure 7.16: Flat predictions

98 Chapter 7. Comparison

N A I W DY PSRV AV Y AR

g
(e}
-1
0 100 150 200
1 v el YL
<
0 100 150 200
1 O v
= 0_/ \V\/ \NWW
T
0 100 150 200
A st Ao T
° (1)'
0 50 100 150 200
1 TN~ VY v
V)
g ok W \Mv\/v% NWW\'\:
o0
_1 1 1 1 1
0 50 100 150 200

Distance (m)

Figure 7.17: Lowest hit or pass
Deviation from truth on test path for different distances in front of the vehicle

1 1 1
E 0
(@)
_10 100 200
£
5o WMMWMHWMMMMMW%M
10 100 150 200
- NWMNPMWVNWVMM
=z B MWWM/ e
1
S MM WWMWWNV/\WVW\M\A
_10 100
£
S0l U"W“WWJ WA Vi N 1 7
0 100 150 200

Distance (m)

Figure 7.18: Lowest w/class adjustment
Deviation from truth on test path for different distances in front of the vehicle

7.3. Long Test Set

99

E 1 1 1 1 1
Z 0
_1 1 1 1 1
0 50 100 150 200
1 1 1 1 1
=
(q\] 0‘
-1 1 1 1 1
0 50 100 150 200
1 1 1 1 1
£ oL
q‘ ? 1 1 1 1
0 50 100 150 200
1 1 1 1 1
g
\O O-
-1 1 1 1 1
0 50 100 150 200
1 1 1 1 1
g N
Zo0
_1 1 1 1 1
0 50 100 150 200

Distance (m)

Figure 7.19: Independent online approach (Chapter

Deviation from truth on test path for different distances in front of the vehicle

E 1 1 1 1 1
o 0 i 1 1 1 1
1 50 100 150 200
1 1 1 1 1
g N
N (1) 1 1 1 1
0 50 100 150 200
1 1 1 1 1
g oL
ﬁ- (1) 1 1 1 1
0 50 100 150 200
1 1 1 1 1
g N
@ ? 1 1 1 1
0 50 100 150 200
1 1 1 1 1
g oL
=0
1 50 100 150 200

Distance (m)

Figure 7.20: Independent online approach - no adaptation (Chapter

Deviation from truth on test path for different distances in front of the vehicle

100 Chapter 7. Comparison

1 T T T T
-1 1 1 1 1
0 50 100 150 200
1 T T T T
-1 1 1 1 1
0 50 100 150 200
1 T T T T
E OF o~ AN —— —~A. A AT M e —
-1 1 1 1 1
0 50 100 150 200
1 T T T T
E 0- AM’MW‘WWW:
-1 1 1 1 1
0 50 100 150 200
1 T T T T
-1 1 1 1 1
0 50 100 150 200

Distance (m)

Figure 7.21: Spatial model approach (Chapter @
Deviation from truth on test path for different distances in front of the vehicle

1 1 1 1 1
(@)
_1 1 1 1 1
0 50 100 150 200
1 1 1 1 1
E ————— A e P
0 -W 3
o
_1 1 1 1 1
0 50 100 150 200
1 1 1 1]
g e R N
OF A/A— ——————— W
i
_1 1 1 1 1
0 50 100 150 200
1 1 1 1 1
O
_1 1 1 1 1
0 50 100 150 200
1
T T T __._/--—'_"'W“—w'\
E - — i~ - _
= L= . el . .
0 50 100 150 200

Distance (m)

Figure 7.22: Flat predictions
Deviation from truth on test path for different distances in front of the vehicle

Chapter 8

Conclusion

8.1 Summary

This thesis has presented two related approaches for automatically learning a terrain model
for autonomous navigation in rough terrain that includes vegetation. The first approach
learns the mapping from sensor data to terrain properties online by interacting with the
world. The second approach includes spatial correlations to constrain the problem and bet-
ter handle dense vegetation and ambiguous data. Both approaches have been implemented
on an autonomous vehicle platform and can run in real-time for moderate vehicle speeds of
1-2m/s.

8.2 Contributions

e First autonomous vehicle that uses interactions with the world to automatically learn
the mapping from range and appearance data to the ground height in vegetation

e New terrain model that exploits spatial correlations to estimate the ground surface
when it is hidden below dense vegetation

e Implementation of two terrain model learning approaches on an automated tractor

8.3 Discussion

Machine learning algorithms and probabilistic modeling have been used to create some of
the most successful systems in a variety of important domains such as face recognition,
handwriting recognition, and speech recognition. These techniques allow assumptions to be
included in a clear and natural way, they can be trained using real data instead of relying on
tweaking parameters by hand, they can handle uncertainty and produce confidence bounds,
and they have well studied algorithms and properties. However, little work has been done
to apply these techniques to the rough-terrain navigation problem.

It is hoped that the work in this thesis shows some of the benefits of using learning and
probabilistic modeling in this domain, and gives a direction for future work in this field.

102 Chapter 8. Conclusion

8.4 Future Work and Extensions

8.4.1 More General Model Structures

This section compares the model structures used in the two approaches given in this thesis,
and proposes an extension using a more general model structure that has the potential to
capture the benefits of both. The graphical models are shown in 1D for clarity, but the
approaches discussed actually use a 2D model structure.

The first approach presented in chapters [3] and [4] learns the mapping directly from fea-
tures of the data to ground height for ind